{"title":"牛中性粒细胞表达 IgM 受体(FcμR)","authors":"Florence B. Gilbert , Pascal Rainard","doi":"10.1016/j.dci.2024.105235","DOIUrl":null,"url":null,"abstract":"<div><p>Bovine neutrophils possess a particular set of receptors for immunoglobulins. They have been shown to express a distinctive receptor for IgG<sub>2</sub>, and it has long been known that they interact poorly with IgG<sub>1</sub> but that they can use IgM antibodies as opsonins. We show that the binding of labeled IgM was inhibited by unlabeled IgM but not by IgA, suggesting that bovine neutrophils express a specific IgM receptor. The binding of non-aggregated IgM is strong at 4 °C, but shedding occurs at 37 °C. We designed anti-peptide antibodies based on the sequence of the FcμR, the newly described receptor for IgM. These antibodies bound to bovine neutrophils at 4 °C. At 37 °C, labeling was lost, but the loss was inhibited by pretreatment with cytochalasin D, indicating internalization of the receptor after cross-linking by antibodies. Neutrophils that had internalized the receptor were no longer able to bind IgM. Eosinophils showed a low level of FcμR expression. FcμR expression by neutrophils was not increased by stimulation with Toll-like receptor agonists or the complement anaphylatoxin C5a, and decreased by TNF-α. Exposure of neutrophils to IFN-γ for 18 h increased FcμR expression without augmenting the binding of IgG<sub>1</sub> or IgG<sub>2</sub>. We confirmed that bovine neutrophils can use IgM to phagocytose and kill bacteria without the help of Complement. Neutrophils that have migrated into the lumen of inflamed lactating mammary glands expressed the FcμR<em>.</em> These results indicate that bovine neutrophils express an IgM receptor, the FcμR, which is functional to contribute to the opsonophagocytosis of bacteria at inflammatory sites. Expression of the FcμR by neutrophils gives IgM a particular importance for the immune defense in the bovine species.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"160 ","pages":"Article 105235"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0145305X24001071/pdfft?md5=bd82025b5761b960e1d88db3716a747e&pid=1-s2.0-S0145305X24001071-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Expression of the receptor for IgM (FcμR) by bovine neutrophils\",\"authors\":\"Florence B. Gilbert , Pascal Rainard\",\"doi\":\"10.1016/j.dci.2024.105235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bovine neutrophils possess a particular set of receptors for immunoglobulins. They have been shown to express a distinctive receptor for IgG<sub>2</sub>, and it has long been known that they interact poorly with IgG<sub>1</sub> but that they can use IgM antibodies as opsonins. We show that the binding of labeled IgM was inhibited by unlabeled IgM but not by IgA, suggesting that bovine neutrophils express a specific IgM receptor. The binding of non-aggregated IgM is strong at 4 °C, but shedding occurs at 37 °C. We designed anti-peptide antibodies based on the sequence of the FcμR, the newly described receptor for IgM. These antibodies bound to bovine neutrophils at 4 °C. At 37 °C, labeling was lost, but the loss was inhibited by pretreatment with cytochalasin D, indicating internalization of the receptor after cross-linking by antibodies. Neutrophils that had internalized the receptor were no longer able to bind IgM. Eosinophils showed a low level of FcμR expression. FcμR expression by neutrophils was not increased by stimulation with Toll-like receptor agonists or the complement anaphylatoxin C5a, and decreased by TNF-α. Exposure of neutrophils to IFN-γ for 18 h increased FcμR expression without augmenting the binding of IgG<sub>1</sub> or IgG<sub>2</sub>. We confirmed that bovine neutrophils can use IgM to phagocytose and kill bacteria without the help of Complement. Neutrophils that have migrated into the lumen of inflamed lactating mammary glands expressed the FcμR<em>.</em> These results indicate that bovine neutrophils express an IgM receptor, the FcμR, which is functional to contribute to the opsonophagocytosis of bacteria at inflammatory sites. Expression of the FcμR by neutrophils gives IgM a particular importance for the immune defense in the bovine species.</p></div>\",\"PeriodicalId\":11228,\"journal\":{\"name\":\"Developmental and comparative immunology\",\"volume\":\"160 \",\"pages\":\"Article 105235\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0145305X24001071/pdfft?md5=bd82025b5761b960e1d88db3716a747e&pid=1-s2.0-S0145305X24001071-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental and comparative immunology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0145305X24001071\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental and comparative immunology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X24001071","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Expression of the receptor for IgM (FcμR) by bovine neutrophils
Bovine neutrophils possess a particular set of receptors for immunoglobulins. They have been shown to express a distinctive receptor for IgG2, and it has long been known that they interact poorly with IgG1 but that they can use IgM antibodies as opsonins. We show that the binding of labeled IgM was inhibited by unlabeled IgM but not by IgA, suggesting that bovine neutrophils express a specific IgM receptor. The binding of non-aggregated IgM is strong at 4 °C, but shedding occurs at 37 °C. We designed anti-peptide antibodies based on the sequence of the FcμR, the newly described receptor for IgM. These antibodies bound to bovine neutrophils at 4 °C. At 37 °C, labeling was lost, but the loss was inhibited by pretreatment with cytochalasin D, indicating internalization of the receptor after cross-linking by antibodies. Neutrophils that had internalized the receptor were no longer able to bind IgM. Eosinophils showed a low level of FcμR expression. FcμR expression by neutrophils was not increased by stimulation with Toll-like receptor agonists or the complement anaphylatoxin C5a, and decreased by TNF-α. Exposure of neutrophils to IFN-γ for 18 h increased FcμR expression without augmenting the binding of IgG1 or IgG2. We confirmed that bovine neutrophils can use IgM to phagocytose and kill bacteria without the help of Complement. Neutrophils that have migrated into the lumen of inflamed lactating mammary glands expressed the FcμR. These results indicate that bovine neutrophils express an IgM receptor, the FcμR, which is functional to contribute to the opsonophagocytosis of bacteria at inflammatory sites. Expression of the FcμR by neutrophils gives IgM a particular importance for the immune defense in the bovine species.
期刊介绍:
Developmental and Comparative Immunology (DCI) is an international journal that publishes articles describing original research in all areas of immunology, including comparative aspects of immunity and the evolution and development of the immune system. Manuscripts describing studies of immune systems in both vertebrates and invertebrates are welcome. All levels of immunological investigations are appropriate: organismal, cellular, biochemical and molecular genetics, extending to such fields as aging of the immune system, interaction between the immune and neuroendocrine system and intestinal immunity.