{"title":"巨噬细胞:心脏组织工程中缺失的关键--持续血管化","authors":"","doi":"10.1016/j.stem.2024.07.001","DOIUrl":null,"url":null,"abstract":"<p>Macrophages regulate angiogenesis, repair, conduction, and homeostasis in heart tissue. Landau et al.<span><span><sup>1</sup></span></span> demonstrate that incorporating primitive macrophages into engineered heart tissues significantly promotes long-term vascularization and cardiac maturation. This advance demonstrates the importance of resident immune-vascular microenvironments in cardiac tissue engineering, marking an important step forward for heart-on-chip technologies.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"16 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophages: A missing key in cardiac tissue engineering for sustained vascularization\",\"authors\":\"\",\"doi\":\"10.1016/j.stem.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Macrophages regulate angiogenesis, repair, conduction, and homeostasis in heart tissue. Landau et al.<span><span><sup>1</sup></span></span> demonstrate that incorporating primitive macrophages into engineered heart tissues significantly promotes long-term vascularization and cardiac maturation. This advance demonstrates the importance of resident immune-vascular microenvironments in cardiac tissue engineering, marking an important step forward for heart-on-chip technologies.</p>\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.07.001\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.07.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Macrophages: A missing key in cardiac tissue engineering for sustained vascularization
Macrophages regulate angiogenesis, repair, conduction, and homeostasis in heart tissue. Landau et al.1 demonstrate that incorporating primitive macrophages into engineered heart tissues significantly promotes long-term vascularization and cardiac maturation. This advance demonstrates the importance of resident immune-vascular microenvironments in cardiac tissue engineering, marking an important step forward for heart-on-chip technologies.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.