量子热机的非平衡波动

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Tobias Denzler, Jonas F G Santos, Eric Lutz and Roberto M Serra
{"title":"量子热机的非平衡波动","authors":"Tobias Denzler, Jonas F G Santos, Eric Lutz and Roberto M Serra","doi":"10.1088/2058-9565/ad6287","DOIUrl":null,"url":null,"abstract":"The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle in a nuclear magnetic resonance setup. We first study the correlations between work and heat within a cycle by extracting their joint distribution for different driving times. We show that near perfect correlation, corresponding to the tight-coupling condition between work and heat, can be achieved. In this limit, the reconstructed efficiency distribution is peaked at the deterministic thermodynamic efficiency, and fluctuations are strongly suppressed. We further successfully test the second law in the form of a joint fluctuation relation for work and heat in the quantum cycle. Our results characterize the statistical features of a small-scale thermal machine in the quantum domain, and provide means to control them.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonequilibrium fluctuations of a quantum heat engine\",\"authors\":\"Tobias Denzler, Jonas F G Santos, Eric Lutz and Roberto M Serra\",\"doi\":\"10.1088/2058-9565/ad6287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle in a nuclear magnetic resonance setup. We first study the correlations between work and heat within a cycle by extracting their joint distribution for different driving times. We show that near perfect correlation, corresponding to the tight-coupling condition between work and heat, can be achieved. In this limit, the reconstructed efficiency distribution is peaked at the deterministic thermodynamic efficiency, and fluctuations are strongly suppressed. We further successfully test the second law in the form of a joint fluctuation relation for work and heat in the quantum cycle. Our results characterize the statistical features of a small-scale thermal machine in the quantum domain, and provide means to control them.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad6287\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad6287","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于热波动和量子波动的存在,量子热机的热力学特性是随机的。我们在此通过实验研究了核磁共振装置中自旋-1/2 量子奥托循环的效率和非平衡熵产生统计。我们首先通过提取不同驱动时间下功和热的联合分布,研究了循环内功和热之间的相关性。我们的研究表明,可以实现近乎完美的相关性,即功与热之间的紧耦合条件。在此极限下,重建的效率分布在确定性热力学效率处达到峰值,波动被强烈抑制。我们以量子循环中功和热的联合波动关系的形式进一步成功地检验了第二定律。我们的结果描述了量子领域小规模热机的统计特征,并提供了控制这些特征的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonequilibrium fluctuations of a quantum heat engine
The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle in a nuclear magnetic resonance setup. We first study the correlations between work and heat within a cycle by extracting their joint distribution for different driving times. We show that near perfect correlation, corresponding to the tight-coupling condition between work and heat, can be achieved. In this limit, the reconstructed efficiency distribution is peaked at the deterministic thermodynamic efficiency, and fluctuations are strongly suppressed. We further successfully test the second law in the form of a joint fluctuation relation for work and heat in the quantum cycle. Our results characterize the statistical features of a small-scale thermal machine in the quantum domain, and provide means to control them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信