钠离子电池用具有高电压稳定性的 O3 型层状过渡金属氧化物阴极的高熵构型

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lei Liu, Yuhang Xin, Yingshuai Wang, Xiangyu Ding, Qingbo Zhou, Ziye Wang, Weiqing Huang and Hongcai Gao
{"title":"钠离子电池用具有高电压稳定性的 O3 型层状过渡金属氧化物阴极的高熵构型","authors":"Lei Liu, Yuhang Xin, Yingshuai Wang, Xiangyu Ding, Qingbo Zhou, Ziye Wang, Weiqing Huang and Hongcai Gao","doi":"10.1039/D4TA04371E","DOIUrl":null,"url":null,"abstract":"<p >The O3-type cathode of NaNi<small><sub>0.4</sub></small>Fe<small><sub>0.2</sub></small>Mn<small><sub>0.4</sub></small>O<small><sub>2</sub></small> stands out for its remarkable theoretical capacity, straightforward production process, affordability, and ecological compatibility for sodium-ion batteries. Nonetheless, the cycle stability of the cathode material is suboptimal. The slippage of the transition metal layers during the charging and discharging process leads to structural instability, and the elevated charging voltages (notably around 4.2 V) initiate the oxygen redox activities, leading to a sustained loss of oxygen ions and irreversible structural degradation. This work pioneers the utilization of a co-substitution strategy with titanium and antimony, fostering a high-entropy configuration of a new O3-type layered oxide cathode of NaNi<small><sub>0.35</sub></small>Fe<small><sub>0.2</sub></small>Mn<small><sub>0.3</sub></small>Ti<small><sub>0.1</sub></small>Sb<small><sub>0.05</sub></small>O<small><sub>2</sub></small>. It meticulously examines the potential effects of Ti<small><sup>4+</sup></small> and Sb<small><sup>5+</sup></small> substitution on the electrochemical performance of the cathode, including the role of the high-entropy configuration in modulating the phase transitions throughout the charging and discharging processes. Importantly, the designed cathode of NaNi<small><sub>0.35</sub></small>Fe<small><sub>0.2</sub></small>Mn<small><sub>0.3</sub></small>Ti<small><sub>0.1</sub></small>Sb<small><sub>0.05</sub></small>O<small><sub>2</sub></small> showcased superior discharge-specific capacity (183.3 mA h g<small><sup>−1</sup></small> at 0.1C in the voltage range of 1.9–4.1 V), improved cycle stability (with a capacity retention of 76.0% after 200 cycles at 1C), robust rate capability (76.3 mA h g<small><sup>−1</sup></small> at 10C) and exceptional high-voltage resilience (213 mA h g<small><sup>−1</sup></small> at 0.1C and capacity retention of 74.0% after 100 cycles at 1C in the voltage range of 1.7–4.3 V). This work articulates a strategic approach for the deliberate design of entropy-regulated cathode materials, aiming at the enhancement of the high voltage stability of cathode materials for sodium-ion batteries.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 35","pages":" 23495-23505"},"PeriodicalIF":10.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-entropy configuration of O3-type layered transition-metal oxide cathode with high-voltage stability for sodium-ion batteries†\",\"authors\":\"Lei Liu, Yuhang Xin, Yingshuai Wang, Xiangyu Ding, Qingbo Zhou, Ziye Wang, Weiqing Huang and Hongcai Gao\",\"doi\":\"10.1039/D4TA04371E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The O3-type cathode of NaNi<small><sub>0.4</sub></small>Fe<small><sub>0.2</sub></small>Mn<small><sub>0.4</sub></small>O<small><sub>2</sub></small> stands out for its remarkable theoretical capacity, straightforward production process, affordability, and ecological compatibility for sodium-ion batteries. Nonetheless, the cycle stability of the cathode material is suboptimal. The slippage of the transition metal layers during the charging and discharging process leads to structural instability, and the elevated charging voltages (notably around 4.2 V) initiate the oxygen redox activities, leading to a sustained loss of oxygen ions and irreversible structural degradation. This work pioneers the utilization of a co-substitution strategy with titanium and antimony, fostering a high-entropy configuration of a new O3-type layered oxide cathode of NaNi<small><sub>0.35</sub></small>Fe<small><sub>0.2</sub></small>Mn<small><sub>0.3</sub></small>Ti<small><sub>0.1</sub></small>Sb<small><sub>0.05</sub></small>O<small><sub>2</sub></small>. It meticulously examines the potential effects of Ti<small><sup>4+</sup></small> and Sb<small><sup>5+</sup></small> substitution on the electrochemical performance of the cathode, including the role of the high-entropy configuration in modulating the phase transitions throughout the charging and discharging processes. Importantly, the designed cathode of NaNi<small><sub>0.35</sub></small>Fe<small><sub>0.2</sub></small>Mn<small><sub>0.3</sub></small>Ti<small><sub>0.1</sub></small>Sb<small><sub>0.05</sub></small>O<small><sub>2</sub></small> showcased superior discharge-specific capacity (183.3 mA h g<small><sup>−1</sup></small> at 0.1C in the voltage range of 1.9–4.1 V), improved cycle stability (with a capacity retention of 76.0% after 200 cycles at 1C), robust rate capability (76.3 mA h g<small><sup>−1</sup></small> at 10C) and exceptional high-voltage resilience (213 mA h g<small><sup>−1</sup></small> at 0.1C and capacity retention of 74.0% after 100 cycles at 1C in the voltage range of 1.7–4.3 V). This work articulates a strategic approach for the deliberate design of entropy-regulated cathode materials, aiming at the enhancement of the high voltage stability of cathode materials for sodium-ion batteries.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 35\",\"pages\":\" 23495-23505\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04371e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04371e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

NaNi0.4Fe0.2Mn0.4O2 的 O3 型阴极因其显著的理论容量、简单的生产工艺、经济性和生态兼容性而在钠离子电池中脱颖而出。然而,这种正极材料的循环稳定性并不理想。充电和放电过程中过渡金属层的滑动导致结构不稳定,而充电电压升高(尤其是在 4.2V 左右)会引发氧氧化还原活动,导致氧离子持续流失和不可逆的结构退化。这项研究开创性地利用了钛和锑的共取代策略,促进了 NaNi0.35Fe0.2Mn0.3Ti0.1Sb0.05O2 新型 O3 型层状氧化物阴极的高熵构型。该研究细致研究了 Ti4+ 和 Sb5+ 取代对阴极电化学性能的潜在影响,包括高熵构型在整个充放电过程中对相变的调节作用。重要的是,NaNi0.35Fe0.2Mn0.3Ti0.1Sb0.05O2 阴极在 1.9-4.1 V 的电压范围内,0.1C 时的放电特定容量为 183.3 mAh-g-1,循环稳定性更高(在 1C 下循环 200 次后容量保持率为 76.0% )、稳健的速率能力(10℃ 时为 76.3 mAh-g-1)和卓越的高电压恢复能力(0.1℃ 时为 213 mAh-g-1,1℃ 100 次循环后容量保持率为 74.0%,电压范围为 1.7-4.3 V)。这项研究为有意设计熵调节阴极材料提供了一种战略方法,旨在提高钠离子电池阴极材料的高压稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-entropy configuration of O3-type layered transition-metal oxide cathode with high-voltage stability for sodium-ion batteries†

High-entropy configuration of O3-type layered transition-metal oxide cathode with high-voltage stability for sodium-ion batteries†

The O3-type cathode of NaNi0.4Fe0.2Mn0.4O2 stands out for its remarkable theoretical capacity, straightforward production process, affordability, and ecological compatibility for sodium-ion batteries. Nonetheless, the cycle stability of the cathode material is suboptimal. The slippage of the transition metal layers during the charging and discharging process leads to structural instability, and the elevated charging voltages (notably around 4.2 V) initiate the oxygen redox activities, leading to a sustained loss of oxygen ions and irreversible structural degradation. This work pioneers the utilization of a co-substitution strategy with titanium and antimony, fostering a high-entropy configuration of a new O3-type layered oxide cathode of NaNi0.35Fe0.2Mn0.3Ti0.1Sb0.05O2. It meticulously examines the potential effects of Ti4+ and Sb5+ substitution on the electrochemical performance of the cathode, including the role of the high-entropy configuration in modulating the phase transitions throughout the charging and discharging processes. Importantly, the designed cathode of NaNi0.35Fe0.2Mn0.3Ti0.1Sb0.05O2 showcased superior discharge-specific capacity (183.3 mA h g−1 at 0.1C in the voltage range of 1.9–4.1 V), improved cycle stability (with a capacity retention of 76.0% after 200 cycles at 1C), robust rate capability (76.3 mA h g−1 at 10C) and exceptional high-voltage resilience (213 mA h g−1 at 0.1C and capacity retention of 74.0% after 100 cycles at 1C in the voltage range of 1.7–4.3 V). This work articulates a strategic approach for the deliberate design of entropy-regulated cathode materials, aiming at the enhancement of the high voltage stability of cathode materials for sodium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信