Ioannis Ioannidis, Vaia Kokonopoulou, Ioannis Pashalidis
{"title":"作为放射性核素(铀-232)载体的聚对苯二甲酸乙二酯(PET)微塑料:表面改变最为重要。","authors":"Ioannis Ioannidis, Vaia Kokonopoulou, Ioannis Pashalidis","doi":"10.1016/j.chemosphere.2024.142970","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethylene terephthalate (PET) plastics find widespread use in various aspects of our daily lives but often end up in the environment as (micro)plastic waste. In this study, the adsorption efficiency of PET microplastics for U-232 has been investigated prior and after surface alteration (e.g. oxidation (PET-ox), MnO<sub>2</sub>-coating (PET/MnO<sub>2</sub>) and biofilm-formation (PET/Biofilm)) in the laboratory (at pH 4, 7 and 9) and seawater samples under ambient conditions and as a function of temperature. The results revealed a significant increase in the adsorption efficiency upon surface alteration, particularly after biofilm development on the MP's surface. Specifically, the K<sub>d</sub> values evaluated for the adsorption of U-232 by PET, PET-ox, PET/MnO<sub>2</sub> and PET/Biofilm are 12, 27, 73 and 363, respectively, at pH 7 and under ambient conditions. The significantly higher adsorption efficiency of the altered and particularly biofilm-coated PET, emphasizes the significance of surface alteration, which may occur under environmental conditions. In addition, according to the thermodynamic investigations the adsorption of U-232 by PET-MPs (both non-treated and modified), the adsorption is an endothermic and entropy-driven reaction. A similar behavior has been also observed using seawater solutions and assumes that surface alteration is expected to enhance the radionuclide, stability, mobility and bioavailability in environmental water systems.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyethylene terephthalate (PET) microplastics as radionuclide (U-232) carriers: Surface alteration matters the most.\",\"authors\":\"Ioannis Ioannidis, Vaia Kokonopoulou, Ioannis Pashalidis\",\"doi\":\"10.1016/j.chemosphere.2024.142970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyethylene terephthalate (PET) plastics find widespread use in various aspects of our daily lives but often end up in the environment as (micro)plastic waste. In this study, the adsorption efficiency of PET microplastics for U-232 has been investigated prior and after surface alteration (e.g. oxidation (PET-ox), MnO<sub>2</sub>-coating (PET/MnO<sub>2</sub>) and biofilm-formation (PET/Biofilm)) in the laboratory (at pH 4, 7 and 9) and seawater samples under ambient conditions and as a function of temperature. The results revealed a significant increase in the adsorption efficiency upon surface alteration, particularly after biofilm development on the MP's surface. Specifically, the K<sub>d</sub> values evaluated for the adsorption of U-232 by PET, PET-ox, PET/MnO<sub>2</sub> and PET/Biofilm are 12, 27, 73 and 363, respectively, at pH 7 and under ambient conditions. The significantly higher adsorption efficiency of the altered and particularly biofilm-coated PET, emphasizes the significance of surface alteration, which may occur under environmental conditions. In addition, according to the thermodynamic investigations the adsorption of U-232 by PET-MPs (both non-treated and modified), the adsorption is an endothermic and entropy-driven reaction. A similar behavior has been also observed using seawater solutions and assumes that surface alteration is expected to enhance the radionuclide, stability, mobility and bioavailability in environmental water systems.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.142970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.142970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Polyethylene terephthalate (PET) microplastics as radionuclide (U-232) carriers: Surface alteration matters the most.
Polyethylene terephthalate (PET) plastics find widespread use in various aspects of our daily lives but often end up in the environment as (micro)plastic waste. In this study, the adsorption efficiency of PET microplastics for U-232 has been investigated prior and after surface alteration (e.g. oxidation (PET-ox), MnO2-coating (PET/MnO2) and biofilm-formation (PET/Biofilm)) in the laboratory (at pH 4, 7 and 9) and seawater samples under ambient conditions and as a function of temperature. The results revealed a significant increase in the adsorption efficiency upon surface alteration, particularly after biofilm development on the MP's surface. Specifically, the Kd values evaluated for the adsorption of U-232 by PET, PET-ox, PET/MnO2 and PET/Biofilm are 12, 27, 73 and 363, respectively, at pH 7 and under ambient conditions. The significantly higher adsorption efficiency of the altered and particularly biofilm-coated PET, emphasizes the significance of surface alteration, which may occur under environmental conditions. In addition, according to the thermodynamic investigations the adsorption of U-232 by PET-MPs (both non-treated and modified), the adsorption is an endothermic and entropy-driven reaction. A similar behavior has been also observed using seawater solutions and assumes that surface alteration is expected to enhance the radionuclide, stability, mobility and bioavailability in environmental water systems.