物理定律可以规避吗?关于超分辨率荧光显微镜的方法

Q3 Medicine
Adrian Rüfli
{"title":"物理定律可以规避吗?关于超分辨率荧光显微镜的方法","authors":"Adrian Rüfli","doi":"10.18388/pb.2021_527","DOIUrl":null,"url":null,"abstract":"<p><p>Biological sciences are increasingly uncovering the foundations of life in greater detail, made possible by the development of research methods enabling exploration at the nanometer scale. Optical microscopy, a field with a significant contribution to current knowledge, is inherently limited by the Abbe limit, stemming from the fundamental wave properties of light. Through the efforts of scientists, this limit can be circumvented, as evidenced by STED and MINFLUX techniques. STED allows imaging with a resolution down to 40 nm, while MINFLUX enables resolution as fine as 2 nm. Both techniques require labelling of biological molecular targets with fluorescent markers and enable imaging in living cells, facilitating the study of dynamic biological processes. This article provides an introduction to super-resolution techniques STED and MINFLUX, demonstrating their utility through the example of studying kinesin movement along microtubules using the MINFLUX technique.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"70 2","pages":"139-149"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can the laws of physics be circumvented? On methods of super-resolution fluorescence microscopy\",\"authors\":\"Adrian Rüfli\",\"doi\":\"10.18388/pb.2021_527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological sciences are increasingly uncovering the foundations of life in greater detail, made possible by the development of research methods enabling exploration at the nanometer scale. Optical microscopy, a field with a significant contribution to current knowledge, is inherently limited by the Abbe limit, stemming from the fundamental wave properties of light. Through the efforts of scientists, this limit can be circumvented, as evidenced by STED and MINFLUX techniques. STED allows imaging with a resolution down to 40 nm, while MINFLUX enables resolution as fine as 2 nm. Both techniques require labelling of biological molecular targets with fluorescent markers and enable imaging in living cells, facilitating the study of dynamic biological processes. This article provides an introduction to super-resolution techniques STED and MINFLUX, demonstrating their utility through the example of studying kinesin movement along microtubules using the MINFLUX technique.</p>\",\"PeriodicalId\":20335,\"journal\":{\"name\":\"Postepy biochemii\",\"volume\":\"70 2\",\"pages\":\"139-149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postepy biochemii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18388/pb.2021_527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postepy biochemii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18388/pb.2021_527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

生物科学正日益深入地揭示生命的基础,这得益于纳米级探索研究方法的发展。光学显微镜是一个对当前知识有重大贡献的领域,但它本身受到源于光的基本波特性的阿贝极限的限制。通过科学家们的努力,这一限制是可以规避的,STED 和 MINFLUX 技术就是证明。STED 的成像分辨率可低至 40 纳米,而 MINFLUX 的分辨率可高达 2 纳米。这两种技术都需要用荧光标记标记生物分子目标,并能在活细胞中成像,从而促进了对动态生物过程的研究。本文介绍了超分辨率技术 STED 和 MINFLUX,并以 MINFLUX 技术研究驱动蛋白沿微管运动为例,展示了这两种技术的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can the laws of physics be circumvented? On methods of super-resolution fluorescence microscopy

Biological sciences are increasingly uncovering the foundations of life in greater detail, made possible by the development of research methods enabling exploration at the nanometer scale. Optical microscopy, a field with a significant contribution to current knowledge, is inherently limited by the Abbe limit, stemming from the fundamental wave properties of light. Through the efforts of scientists, this limit can be circumvented, as evidenced by STED and MINFLUX techniques. STED allows imaging with a resolution down to 40 nm, while MINFLUX enables resolution as fine as 2 nm. Both techniques require labelling of biological molecular targets with fluorescent markers and enable imaging in living cells, facilitating the study of dynamic biological processes. This article provides an introduction to super-resolution techniques STED and MINFLUX, demonstrating their utility through the example of studying kinesin movement along microtubules using the MINFLUX technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Postepy biochemii
Postepy biochemii Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信