Camilo A Castelblanco, Seth D Springer, Mikki Schantell, Jason A John, Anna T Coutant, Lucy K Horne, Ryan Glesinger, Jacob A Eastman, Tony W Wilson
{"title":"慢性大麻使用者在视觉空间处理过程中表现出振荡动态和功能连接的改变。","authors":"Camilo A Castelblanco, Seth D Springer, Mikki Schantell, Jason A John, Anna T Coutant, Lucy K Horne, Ryan Glesinger, Jacob A Eastman, Tony W Wilson","doi":"10.1177/02698811241265764","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cannabis is the most widely used psychoactive drug in the United States. While multiple studies have associated acute cannabis consumption with alterations in cognitive function (e.g., visual and spatial attention), far less is known regarding the effects of chronic consumption on the neural dynamics supporting these cognitive functions.</p><p><strong>Methods: </strong>We used magnetoencephalography (MEG) and an established visuospatial processing task to elicit multi-spectral neuronal responses in 44 regular cannabis users and 53 demographically matched non-user controls. To examine the effects of chronic cannabis use on the oscillatory dynamics underlying visuospatial processing, neural responses were imaged using a time-frequency resolved beamformer and compared across groups.</p><p><strong>Results: </strong>Neuronal oscillations serving visuospatial processing were identified in the theta (4-8 Hz), alpha (8-14 Hz), and gamma range (56-76 Hz), and these were imaged and examined for group differences. Our key results indicated that users exhibited weaker theta oscillations in occipital and cerebellar regions and weaker gamma responses in the left temporal cortices compared to non-users. Lastly, alpha oscillations did not differ, but alpha connectivity among higher-order attention areas was weaker in cannabis users relative to non-users and correlated with performance.</p><p><strong>Conclusions: </strong>Overall, these results suggest that chronic cannabis users have alterations in the oscillatory dynamics and neural connectivity serving visuospatial attention. Such alterations were observed across multiple cortical areas critical for higher-order processing and may reflect compensatory activity and/or the initial emergence of aberrant dynamics. Future work is needed to fully understand the implications of altered multispectral oscillations and neural connectivity in cannabis users.</p>","PeriodicalId":16892,"journal":{"name":"Journal of Psychopharmacology","volume":" ","pages":"724-734"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471968/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chronic Cannabis users exhibit altered oscillatory dynamics and functional connectivity serving visuospatial processing.\",\"authors\":\"Camilo A Castelblanco, Seth D Springer, Mikki Schantell, Jason A John, Anna T Coutant, Lucy K Horne, Ryan Glesinger, Jacob A Eastman, Tony W Wilson\",\"doi\":\"10.1177/02698811241265764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cannabis is the most widely used psychoactive drug in the United States. While multiple studies have associated acute cannabis consumption with alterations in cognitive function (e.g., visual and spatial attention), far less is known regarding the effects of chronic consumption on the neural dynamics supporting these cognitive functions.</p><p><strong>Methods: </strong>We used magnetoencephalography (MEG) and an established visuospatial processing task to elicit multi-spectral neuronal responses in 44 regular cannabis users and 53 demographically matched non-user controls. To examine the effects of chronic cannabis use on the oscillatory dynamics underlying visuospatial processing, neural responses were imaged using a time-frequency resolved beamformer and compared across groups.</p><p><strong>Results: </strong>Neuronal oscillations serving visuospatial processing were identified in the theta (4-8 Hz), alpha (8-14 Hz), and gamma range (56-76 Hz), and these were imaged and examined for group differences. Our key results indicated that users exhibited weaker theta oscillations in occipital and cerebellar regions and weaker gamma responses in the left temporal cortices compared to non-users. Lastly, alpha oscillations did not differ, but alpha connectivity among higher-order attention areas was weaker in cannabis users relative to non-users and correlated with performance.</p><p><strong>Conclusions: </strong>Overall, these results suggest that chronic cannabis users have alterations in the oscillatory dynamics and neural connectivity serving visuospatial attention. Such alterations were observed across multiple cortical areas critical for higher-order processing and may reflect compensatory activity and/or the initial emergence of aberrant dynamics. Future work is needed to fully understand the implications of altered multispectral oscillations and neural connectivity in cannabis users.</p>\",\"PeriodicalId\":16892,\"journal\":{\"name\":\"Journal of Psychopharmacology\",\"volume\":\" \",\"pages\":\"724-734\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Psychopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/02698811241265764\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/02698811241265764","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Background: Cannabis is the most widely used psychoactive drug in the United States. While multiple studies have associated acute cannabis consumption with alterations in cognitive function (e.g., visual and spatial attention), far less is known regarding the effects of chronic consumption on the neural dynamics supporting these cognitive functions.
Methods: We used magnetoencephalography (MEG) and an established visuospatial processing task to elicit multi-spectral neuronal responses in 44 regular cannabis users and 53 demographically matched non-user controls. To examine the effects of chronic cannabis use on the oscillatory dynamics underlying visuospatial processing, neural responses were imaged using a time-frequency resolved beamformer and compared across groups.
Results: Neuronal oscillations serving visuospatial processing were identified in the theta (4-8 Hz), alpha (8-14 Hz), and gamma range (56-76 Hz), and these were imaged and examined for group differences. Our key results indicated that users exhibited weaker theta oscillations in occipital and cerebellar regions and weaker gamma responses in the left temporal cortices compared to non-users. Lastly, alpha oscillations did not differ, but alpha connectivity among higher-order attention areas was weaker in cannabis users relative to non-users and correlated with performance.
Conclusions: Overall, these results suggest that chronic cannabis users have alterations in the oscillatory dynamics and neural connectivity serving visuospatial attention. Such alterations were observed across multiple cortical areas critical for higher-order processing and may reflect compensatory activity and/or the initial emergence of aberrant dynamics. Future work is needed to fully understand the implications of altered multispectral oscillations and neural connectivity in cannabis users.
期刊介绍:
The Journal of Psychopharmacology is a fully peer-reviewed, international journal that publishes original research and review articles on preclinical and clinical aspects of psychopharmacology. The journal provides an essential forum for researchers and practicing clinicians on the effects of drugs on animal and human behavior, and the mechanisms underlying these effects. The Journal of Psychopharmacology is truly international in scope and readership.