Clessius Ribeiro de Souza, Gabriel Souza-Silva, Fernanda Viana Moreira Silva, Paula von Randow Cardoso, Walter Dos Santos Lima, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, Micheline Rosa Silveira
{"title":"蒿属鱼直接和间接遗传毒性的生态毒理学研究:综述。","authors":"Clessius Ribeiro de Souza, Gabriel Souza-Silva, Fernanda Viana Moreira Silva, Paula von Randow Cardoso, Walter Dos Santos Lima, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, Micheline Rosa Silveira","doi":"10.1080/10934529.2024.2384216","DOIUrl":null,"url":null,"abstract":"<p><p><i>Artemia</i> is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. <i>Artemia franciscana</i> and <i>Artemia salina</i> species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present <i>Artemia</i> genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of <i>Artemia</i> for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using <i>Artemia</i> genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecotoxicological studies of direct and indirect genotoxicity with <i>Artemia</i>: a integrative review.\",\"authors\":\"Clessius Ribeiro de Souza, Gabriel Souza-Silva, Fernanda Viana Moreira Silva, Paula von Randow Cardoso, Walter Dos Santos Lima, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, Micheline Rosa Silveira\",\"doi\":\"10.1080/10934529.2024.2384216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Artemia</i> is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. <i>Artemia franciscana</i> and <i>Artemia salina</i> species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present <i>Artemia</i> genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of <i>Artemia</i> for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using <i>Artemia</i> genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2024.2384216\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2384216","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
蒿属盐水虾是一种适应极端生境的虾类,如盐度范围为 5-25 g/L,温度范围为 9-35 °C。它分布广泛,被用作环境质量的生物标志物。Artemia franciscana 和 Artemia salina 由于其生命周期短、繁殖率高、易于养殖且容易获得,通常用于生态毒理学研究和遗传毒性试验。因此,考虑到这些试验在生态毒理学研究中的重要性,本研究旨在将蒿属作为一种生物模型用于遗传毒性研究。为此,我们查阅了相关文献,分析了截至 2023 年 7 月在 Web of Science、SCOPUS、Embase 和 PubMed 数据库中发表的数据。经过筛选,我们选出了 34 篇研究Artemia 对各种物质的遗传毒性的文章。这篇综述介绍了以Artemia属作为生态毒理学研究的生物模型,在遗传毒性实验规划和生物标志物方面的可变性,并展示了监测生化改变和遗传损伤效应的可能性。此外,还重点介绍了转录组和代谢组分析等创新技术,以及对连续几代人进行的研究,以确定 DNA 的变化,进而确定基因表达的变化。
Ecotoxicological studies of direct and indirect genotoxicity with Artemia: a integrative review.
Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.