Neil P Schultes, Judith P Sinn, Eric S Swenson, Timothy W McNellis
{"title":"火疫病病原体 Erwinia amylovora 在苹果花柱头上增殖或在果实中致病并不需要合成天冬氨酸和酪氨酸。","authors":"Neil P Schultes, Judith P Sinn, Eric S Swenson, Timothy W McNellis","doi":"10.1093/jambio/lxae185","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The Gram-negative bacterium Erwinia amylovora (Ea) is the causal agent of fire blight, a devastating disease of apples and pears. In the fire blight disease cycle, Ea grows in different plant tissues, each presenting a distinct nutrient environment. Here, we investigate the ability of aspartate and tyrosine double auxotroph Ea lines to proliferate on apple flower stigma surfaces representing the epiphytic growth stage of Ea and in developing fruitlets representing one endophytic growth stage of Ea.</p><p><strong>Methods and results: </strong>Heterologous complementation studies in an Escherichia coli aspartate and tyrosine auxotroph verify that Ea aspartate aminotransferase (AspC) and tyrosine aminotransferase (TyrB) act as aspartate and tyrosine amino transferases. Growth analysis reveals that Ea aspC tyrB mutants multiply to near-wild-type levels on apple flower stigmas and immature fruitlets.</p><p><strong>Conclusions: </strong>Ea AspC and TyrB are reciprocally complementing for aspartate and tyrosine synthesis in Ec and in Ea. Ea aspC and tyrB mutants obtain sufficient aspartate and tyrosine to support multiplication on stigma surfaces and virulence in immature fruitlets.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of aspartic acid and tyrosine by the fire blight pathogen Erwinia amylovora is not required for proliferation on apple flower stigmas or virulence in fruitlets.\",\"authors\":\"Neil P Schultes, Judith P Sinn, Eric S Swenson, Timothy W McNellis\",\"doi\":\"10.1093/jambio/lxae185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>The Gram-negative bacterium Erwinia amylovora (Ea) is the causal agent of fire blight, a devastating disease of apples and pears. In the fire blight disease cycle, Ea grows in different plant tissues, each presenting a distinct nutrient environment. Here, we investigate the ability of aspartate and tyrosine double auxotroph Ea lines to proliferate on apple flower stigma surfaces representing the epiphytic growth stage of Ea and in developing fruitlets representing one endophytic growth stage of Ea.</p><p><strong>Methods and results: </strong>Heterologous complementation studies in an Escherichia coli aspartate and tyrosine auxotroph verify that Ea aspartate aminotransferase (AspC) and tyrosine aminotransferase (TyrB) act as aspartate and tyrosine amino transferases. Growth analysis reveals that Ea aspC tyrB mutants multiply to near-wild-type levels on apple flower stigmas and immature fruitlets.</p><p><strong>Conclusions: </strong>Ea AspC and TyrB are reciprocally complementing for aspartate and tyrosine synthesis in Ec and in Ea. Ea aspC and tyrB mutants obtain sufficient aspartate and tyrosine to support multiplication on stigma surfaces and virulence in immature fruitlets.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxae185\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Synthesis of aspartic acid and tyrosine by the fire blight pathogen Erwinia amylovora is not required for proliferation on apple flower stigmas or virulence in fruitlets.
Aims: The Gram-negative bacterium Erwinia amylovora (Ea) is the causal agent of fire blight, a devastating disease of apples and pears. In the fire blight disease cycle, Ea grows in different plant tissues, each presenting a distinct nutrient environment. Here, we investigate the ability of aspartate and tyrosine double auxotroph Ea lines to proliferate on apple flower stigma surfaces representing the epiphytic growth stage of Ea and in developing fruitlets representing one endophytic growth stage of Ea.
Methods and results: Heterologous complementation studies in an Escherichia coli aspartate and tyrosine auxotroph verify that Ea aspartate aminotransferase (AspC) and tyrosine aminotransferase (TyrB) act as aspartate and tyrosine amino transferases. Growth analysis reveals that Ea aspC tyrB mutants multiply to near-wild-type levels on apple flower stigmas and immature fruitlets.
Conclusions: Ea AspC and TyrB are reciprocally complementing for aspartate and tyrosine synthesis in Ec and in Ea. Ea aspC and tyrB mutants obtain sufficient aspartate and tyrosine to support multiplication on stigma surfaces and virulence in immature fruitlets.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.