{"title":"调节因子 X7 通过 SIRT4 介导的 JAK2/STAT3 通路失活抑制 Ox-LDL 诱导的血管内皮细胞增殖和迁移","authors":"Yinheng Hao, Wei Li","doi":"10.1536/ihj.23-631","DOIUrl":null,"url":null,"abstract":"<p><p>The regulatory factor X7 (RFX7) is a vital mediator in atherosclerosis. This study aims to discuss the effect and underlying mechanism of RFX7 on the regulation of oxidized low-density lipoprotein (ox-LDL) -induced proliferation and migration of vascular smooth muscle cells (VSMCs).Ox-LDL was used to construct atherosclerosis in vitro model. The mRNA and protein levels of RFX7 and Sirtuin 4 (SIRT4) were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assays. The cellular functions were measured via 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), EdU, flow cytometry, and wound healing assay assays. The interaction between RFX7 and SIRT4 promoter was validated using chromatin immunoprecipitation and dual-luciferase reporter assays.The stimulation with ox-LDL elevated the viability of VSMCs and decreased the mRNA and protein levels of RFX7 and SIRT4 in VSMCs in a dose-dependent manner. Functionally, RFX7 overexpression restrained the VSMC viability, proliferation, and migration induced by ox-LDL, but facilitated VSMC apoptosis. RFX7 elevated SIRT4 expression via binding to its promoter. Furthermore, overexpressing either SIRT4 or RFX7 inactivated JAK2/STAT3 signaling, causing a decrease in VSMC proliferation and migration and an increase in VSMC apoptosis when exposed to ox-LDL. The impact of RFX7 overexpression on JAK2/STAT3 signaling and cellular function following ox-LDL exposure was abrogated by SIRT4 silencing.The heightened RFX7 expression restrained the proliferation and migration of ox-LDL-stimulated VSMCs via SIRT4-mediated inactivation of JAK2/STAT3 pathway.</p>","PeriodicalId":13711,"journal":{"name":"International heart journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulatory factor X7 Represses Ox-LDL-Induced Proliferation and Migration of VSMCs via SIRT4-Mediated Inactivation of JAK2/STAT3 Pathway.\",\"authors\":\"Yinheng Hao, Wei Li\",\"doi\":\"10.1536/ihj.23-631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regulatory factor X7 (RFX7) is a vital mediator in atherosclerosis. This study aims to discuss the effect and underlying mechanism of RFX7 on the regulation of oxidized low-density lipoprotein (ox-LDL) -induced proliferation and migration of vascular smooth muscle cells (VSMCs).Ox-LDL was used to construct atherosclerosis in vitro model. The mRNA and protein levels of RFX7 and Sirtuin 4 (SIRT4) were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assays. The cellular functions were measured via 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), EdU, flow cytometry, and wound healing assay assays. The interaction between RFX7 and SIRT4 promoter was validated using chromatin immunoprecipitation and dual-luciferase reporter assays.The stimulation with ox-LDL elevated the viability of VSMCs and decreased the mRNA and protein levels of RFX7 and SIRT4 in VSMCs in a dose-dependent manner. Functionally, RFX7 overexpression restrained the VSMC viability, proliferation, and migration induced by ox-LDL, but facilitated VSMC apoptosis. RFX7 elevated SIRT4 expression via binding to its promoter. Furthermore, overexpressing either SIRT4 or RFX7 inactivated JAK2/STAT3 signaling, causing a decrease in VSMC proliferation and migration and an increase in VSMC apoptosis when exposed to ox-LDL. The impact of RFX7 overexpression on JAK2/STAT3 signaling and cellular function following ox-LDL exposure was abrogated by SIRT4 silencing.The heightened RFX7 expression restrained the proliferation and migration of ox-LDL-stimulated VSMCs via SIRT4-mediated inactivation of JAK2/STAT3 pathway.</p>\",\"PeriodicalId\":13711,\"journal\":{\"name\":\"International heart journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International heart journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1536/ihj.23-631\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International heart journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1536/ihj.23-631","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Regulatory factor X7 Represses Ox-LDL-Induced Proliferation and Migration of VSMCs via SIRT4-Mediated Inactivation of JAK2/STAT3 Pathway.
The regulatory factor X7 (RFX7) is a vital mediator in atherosclerosis. This study aims to discuss the effect and underlying mechanism of RFX7 on the regulation of oxidized low-density lipoprotein (ox-LDL) -induced proliferation and migration of vascular smooth muscle cells (VSMCs).Ox-LDL was used to construct atherosclerosis in vitro model. The mRNA and protein levels of RFX7 and Sirtuin 4 (SIRT4) were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assays. The cellular functions were measured via 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), EdU, flow cytometry, and wound healing assay assays. The interaction between RFX7 and SIRT4 promoter was validated using chromatin immunoprecipitation and dual-luciferase reporter assays.The stimulation with ox-LDL elevated the viability of VSMCs and decreased the mRNA and protein levels of RFX7 and SIRT4 in VSMCs in a dose-dependent manner. Functionally, RFX7 overexpression restrained the VSMC viability, proliferation, and migration induced by ox-LDL, but facilitated VSMC apoptosis. RFX7 elevated SIRT4 expression via binding to its promoter. Furthermore, overexpressing either SIRT4 or RFX7 inactivated JAK2/STAT3 signaling, causing a decrease in VSMC proliferation and migration and an increase in VSMC apoptosis when exposed to ox-LDL. The impact of RFX7 overexpression on JAK2/STAT3 signaling and cellular function following ox-LDL exposure was abrogated by SIRT4 silencing.The heightened RFX7 expression restrained the proliferation and migration of ox-LDL-stimulated VSMCs via SIRT4-mediated inactivation of JAK2/STAT3 pathway.
期刊介绍:
Authors of research articles should disclose at the time of submission any financial arrangement they may have with a company whose product figures prominently in the submitted manuscript or with a company making a competing product. Such information will be held in confidence while the paper is under review and will not influence the editorial decision, but if the article is accepted for publication, the editors will usually discuss with the authors the manner in which such information is to be communicated to the reader.