体生长抑素中间神经元招募成年小鼠齿状回突触前和突触后的 GABAB 受体

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2024-08-19 Print Date: 2024-08-01 DOI:10.1523/ENEURO.0115-24.2024
Thomas C Watson, Sam A Booker
{"title":"体生长抑素中间神经元招募成年小鼠齿状回突触前和突触后的 GABAB 受体","authors":"Thomas C Watson, Sam A Booker","doi":"10.1523/ENEURO.0115-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of spatial information in the mammalian dentate gyrus (DG) is critical to navigation. Indeed, DG granule cells (DGCs) rely upon finely balanced inhibitory neurotransmission in order to respond appropriately to specific spatial inputs. This inhibition arises from a heterogeneous population of local GABAergic interneurons (INs) that activate both fast, ionotropic GABA<sub>A</sub> receptors (GABA<sub>A</sub>R) and slow, metabotropic GABA<sub>B</sub> receptors (GABA<sub>B</sub>R), respectively. GABA<sub>B</sub>Rs in turn inhibit pre- and postsynaptic neuronal compartments via temporally long-lasting G-protein-dependent mechanisms. The relative contribution of each IN subtype to network level GABA<sub>B</sub>R signal setting remains unknown. However, within the DG, the somatostatin (SSt) expressing IN subtype is considered crucial in coordinating appropriate feedback inhibition on to DGCs. Therefore, we virally delivered channelrhodopsin 2 to the DG in order to obtain control of this specific SSt IN subpopulation in male and female adult mice. Using a combination of optogenetic activation and pharmacology, we show that SSt INs strongly recruit postsynaptic GABA<sub>B</sub>Rs to drive greater inhibition in DGCs than GABA<sub>A</sub>Rs at physiological membrane potentials. Furthermore, we show that in the adult mouse DG, postsynaptic GABA<sub>B</sub>R signaling is predominantly regulated by neuronal GABA uptake and less so by astrocytic mechanisms. Finally, we confirm that activation of SSt INs can also recruit presynaptic GABA<sub>B</sub>Rs, as has been shown in neocortical circuits. Together, these data reveal that GABA<sub>B</sub>R signaling allows SSt INs to control DG activity and may constitute a key mechanism for gating spatial information flow within hippocampal circuits.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334949/pdf/","citationCount":"0","resultStr":"{\"title\":\"Somatostatin Interneurons Recruit Pre- and Postsynaptic GABA<sub>B</sub> Receptors in the Adult Mouse Dentate Gyrus.\",\"authors\":\"Thomas C Watson, Sam A Booker\",\"doi\":\"10.1523/ENEURO.0115-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of spatial information in the mammalian dentate gyrus (DG) is critical to navigation. Indeed, DG granule cells (DGCs) rely upon finely balanced inhibitory neurotransmission in order to respond appropriately to specific spatial inputs. This inhibition arises from a heterogeneous population of local GABAergic interneurons (INs) that activate both fast, ionotropic GABA<sub>A</sub> receptors (GABA<sub>A</sub>R) and slow, metabotropic GABA<sub>B</sub> receptors (GABA<sub>B</sub>R), respectively. GABA<sub>B</sub>Rs in turn inhibit pre- and postsynaptic neuronal compartments via temporally long-lasting G-protein-dependent mechanisms. The relative contribution of each IN subtype to network level GABA<sub>B</sub>R signal setting remains unknown. However, within the DG, the somatostatin (SSt) expressing IN subtype is considered crucial in coordinating appropriate feedback inhibition on to DGCs. Therefore, we virally delivered channelrhodopsin 2 to the DG in order to obtain control of this specific SSt IN subpopulation in male and female adult mice. Using a combination of optogenetic activation and pharmacology, we show that SSt INs strongly recruit postsynaptic GABA<sub>B</sub>Rs to drive greater inhibition in DGCs than GABA<sub>A</sub>Rs at physiological membrane potentials. Furthermore, we show that in the adult mouse DG, postsynaptic GABA<sub>B</sub>R signaling is predominantly regulated by neuronal GABA uptake and less so by astrocytic mechanisms. Finally, we confirm that activation of SSt INs can also recruit presynaptic GABA<sub>B</sub>Rs, as has been shown in neocortical circuits. Together, these data reveal that GABA<sub>B</sub>R signaling allows SSt INs to control DG activity and may constitute a key mechanism for gating spatial information flow within hippocampal circuits.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334949/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0115-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0115-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物齿状回(DG)中空间信息的整合对导航至关重要。事实上,齿状回颗粒细胞(DGC)依赖于精细平衡的抑制性神经传递,以便对特定的空间输入做出适当的反应。这种抑制作用来自异质性的局部 GABA 能中间神经元(IN),它们分别激活快速离子型 GABAA 受体(GABAAR)和慢速代谢型 GABAB 受体(GABABR)。GABABR 反过来又通过时间持久的 G 蛋白依赖机制抑制突触前和突触后神经元区。然而,在 DG 中,表达体生长抑素(SSt)的 IN 亚型被认为是协调对 DGC 的适当反馈抑制的关键。因此,我们通过病毒将channelrhodopsin-2传递到DG,以便在雄性和雌性成年小鼠体内获得对这一特定SSt IN亚群的控制。通过光遗传学激活和药理学相结合的方法,我们发现在生理膜电位下,SSt IN会强烈招募突触后GABABR,从而驱动DGCs产生比GABAAR更大的抑制作用。此外,我们还发现,在成年小鼠 DG 中,突触后 GABABR 信号主要受神经元 GABA 吸收的调节,而较少受星形胶质细胞机制的调节。最后,我们证实 SSt INs 的激活也能招募突触前 GABABR,这在新皮层回路中已经得到证实。这些数据共同揭示了 GABABR 信号可使 SSt INs 控制 DG 的活动,并可能构成海马回路内空间信息流门控的关键机制。虽然人们对 GABAB 受体信号传导的基本特性了解很多,但目前对特定中间神经元亚群对这一抑制性神经传递机制的相对贡献了解较少。我们的研究结果表明,在小鼠齿状回中,表达体生长抑素的中间神经元亚群提供了强大的 GABAB 受体介导的反馈抑制作用,这有助于填补这一知识空白。此外,研究还发现齿状回中 GABAB 受体的激活受到神经元而非星形胶质细胞对 GABA 的摄取的严格调控,从而提供了自我调节的反馈抑制。这些数据为了解细胞类型特异的 GABAB 受体介导的齿状回回路控制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Somatostatin Interneurons Recruit Pre- and Postsynaptic GABAB Receptors in the Adult Mouse Dentate Gyrus.

The integration of spatial information in the mammalian dentate gyrus (DG) is critical to navigation. Indeed, DG granule cells (DGCs) rely upon finely balanced inhibitory neurotransmission in order to respond appropriately to specific spatial inputs. This inhibition arises from a heterogeneous population of local GABAergic interneurons (INs) that activate both fast, ionotropic GABAA receptors (GABAAR) and slow, metabotropic GABAB receptors (GABABR), respectively. GABABRs in turn inhibit pre- and postsynaptic neuronal compartments via temporally long-lasting G-protein-dependent mechanisms. The relative contribution of each IN subtype to network level GABABR signal setting remains unknown. However, within the DG, the somatostatin (SSt) expressing IN subtype is considered crucial in coordinating appropriate feedback inhibition on to DGCs. Therefore, we virally delivered channelrhodopsin 2 to the DG in order to obtain control of this specific SSt IN subpopulation in male and female adult mice. Using a combination of optogenetic activation and pharmacology, we show that SSt INs strongly recruit postsynaptic GABABRs to drive greater inhibition in DGCs than GABAARs at physiological membrane potentials. Furthermore, we show that in the adult mouse DG, postsynaptic GABABR signaling is predominantly regulated by neuronal GABA uptake and less so by astrocytic mechanisms. Finally, we confirm that activation of SSt INs can also recruit presynaptic GABABRs, as has been shown in neocortical circuits. Together, these data reveal that GABABR signaling allows SSt INs to control DG activity and may constitute a key mechanism for gating spatial information flow within hippocampal circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信