超免疫血清干粉配方。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Drug Delivery and Translational Research Pub Date : 2025-04-01 Epub Date: 2024-07-31 DOI:10.1007/s13346-024-01678-8
Annalisa Bianchera, Gaetano Donofrio, Fabio Sonvico, Ruggero Bettini
{"title":"超免疫血清干粉配方。","authors":"Annalisa Bianchera, Gaetano Donofrio, Fabio Sonvico, Ruggero Bettini","doi":"10.1007/s13346-024-01678-8","DOIUrl":null,"url":null,"abstract":"<p><p>Effective strategies against the spread of respiratory viruses are needed, as tragically demonstrated during the COVID-19 pandemic. Apart from vaccines, other preventive or protective measures are necessary: one promising strategy involves the nasal delivery of preventive or protective agents, targeting the site of initial infection. Harnessing the immune system's ability to produce specific antibodies, a hyperimmune serum, collected from an individual vaccinated against SARS-CoV-2, was formulated as a dry powder for nasal administration. The selection of adequate excipients and process are key to maintaining protein stability and modulating the aerodynamic properties of the powders for reaching the desired respiratory regions. To this end, a hyperimmune serum was formulated with trehalose and mannitol as bulking agents during spray drying, then the ability of the redissolved immunoglobulins to bind Spike protein was verified by ELISA; foetal bovine serum was formulated in the same conditions as a reference. Moreover, a seroneutralization assay against SARS-CoV-2 pseudoviruses generated from different variants of concern was performed. The neutralizing ability of the serum was slightly reduced with respect to the starting serum when trehalose was used as a bulking agent. The powders were loaded in hypromellose capsules and aerosolized employing a nasal insufflator in an in vitro model of the nasal cavity connected to a Next Generation Impactor. The analysis of the powder distribution confirmed that all powders were inhalable and could target, at the same time, the upper and the lower airways. This is a preliminary proof-of-concept that this approach can constitute an effective strategy to provide broad coverage and protection against SARS-CoV-2, and in general against viruses affecting the airway. According to blood availability from donors, pools of hyperimmune sera could be rapidly formulated and administered, providing a simultaneous and timely neutralization of emerging viral variants.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"1330-1341"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dry powder formulations of hyperimmune serum.\",\"authors\":\"Annalisa Bianchera, Gaetano Donofrio, Fabio Sonvico, Ruggero Bettini\",\"doi\":\"10.1007/s13346-024-01678-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective strategies against the spread of respiratory viruses are needed, as tragically demonstrated during the COVID-19 pandemic. Apart from vaccines, other preventive or protective measures are necessary: one promising strategy involves the nasal delivery of preventive or protective agents, targeting the site of initial infection. Harnessing the immune system's ability to produce specific antibodies, a hyperimmune serum, collected from an individual vaccinated against SARS-CoV-2, was formulated as a dry powder for nasal administration. The selection of adequate excipients and process are key to maintaining protein stability and modulating the aerodynamic properties of the powders for reaching the desired respiratory regions. To this end, a hyperimmune serum was formulated with trehalose and mannitol as bulking agents during spray drying, then the ability of the redissolved immunoglobulins to bind Spike protein was verified by ELISA; foetal bovine serum was formulated in the same conditions as a reference. Moreover, a seroneutralization assay against SARS-CoV-2 pseudoviruses generated from different variants of concern was performed. The neutralizing ability of the serum was slightly reduced with respect to the starting serum when trehalose was used as a bulking agent. The powders were loaded in hypromellose capsules and aerosolized employing a nasal insufflator in an in vitro model of the nasal cavity connected to a Next Generation Impactor. The analysis of the powder distribution confirmed that all powders were inhalable and could target, at the same time, the upper and the lower airways. This is a preliminary proof-of-concept that this approach can constitute an effective strategy to provide broad coverage and protection against SARS-CoV-2, and in general against viruses affecting the airway. According to blood availability from donors, pools of hyperimmune sera could be rapidly formulated and administered, providing a simultaneous and timely neutralization of emerging viral variants.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"1330-1341\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01678-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01678-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

正如在 COVID-19 大流行期间悲惨地证明的那样,我们需要有效的策略来防止呼吸道病毒的传播。除疫苗外,还必须采取其他预防或保护措施:一种很有前途的策略是针对初次感染部位,通过鼻腔输送预防或保护剂。利用免疫系统产生特异性抗体的能力,从接种过 SARS-CoV-2 疫苗的人身上采集的超免疫血清被配制成干粉,用于鼻腔给药。选择适当的辅料和工艺是保持蛋白质稳定性和调节粉末空气动力学特性以到达所需呼吸区域的关键。为此,我们在喷雾干燥过程中使用妥尔糖和甘露醇作为膨松剂配制了超免疫血清,然后通过 ELISA 验证了重新溶解的免疫球蛋白与 Spike 蛋白结合的能力;胎牛血清也是在相同条件下配制的,作为参照物。此外,还进行了针对 SARS-CoV-2 不同变种假病毒的血清中和试验。当使用树胶糖作为膨松剂时,血清的中和能力与初始血清相比略有降低。将粉末装入低聚果糖胶囊,并在与下一代冲击器相连的体外鼻腔模型中使用鼻腔充气器进行气溶。对粉末分布的分析表明,所有粉末均可吸入,并可同时针对上呼吸道和下呼吸道。这是一个初步的概念验证,证明这种方法可以成为一种有效的策略,对 SARS-CoV-2 和一般影响气道的病毒提供广泛的覆盖和保护。根据献血者的血液供应情况,可以迅速配制和提供超免疫血清池,从而同时和及时地中和新出现的病毒变种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dry powder formulations of hyperimmune serum.

Dry powder formulations of hyperimmune serum.

Effective strategies against the spread of respiratory viruses are needed, as tragically demonstrated during the COVID-19 pandemic. Apart from vaccines, other preventive or protective measures are necessary: one promising strategy involves the nasal delivery of preventive or protective agents, targeting the site of initial infection. Harnessing the immune system's ability to produce specific antibodies, a hyperimmune serum, collected from an individual vaccinated against SARS-CoV-2, was formulated as a dry powder for nasal administration. The selection of adequate excipients and process are key to maintaining protein stability and modulating the aerodynamic properties of the powders for reaching the desired respiratory regions. To this end, a hyperimmune serum was formulated with trehalose and mannitol as bulking agents during spray drying, then the ability of the redissolved immunoglobulins to bind Spike protein was verified by ELISA; foetal bovine serum was formulated in the same conditions as a reference. Moreover, a seroneutralization assay against SARS-CoV-2 pseudoviruses generated from different variants of concern was performed. The neutralizing ability of the serum was slightly reduced with respect to the starting serum when trehalose was used as a bulking agent. The powders were loaded in hypromellose capsules and aerosolized employing a nasal insufflator in an in vitro model of the nasal cavity connected to a Next Generation Impactor. The analysis of the powder distribution confirmed that all powders were inhalable and could target, at the same time, the upper and the lower airways. This is a preliminary proof-of-concept that this approach can constitute an effective strategy to provide broad coverage and protection against SARS-CoV-2, and in general against viruses affecting the airway. According to blood availability from donors, pools of hyperimmune sera could be rapidly formulated and administered, providing a simultaneous and timely neutralization of emerging viral variants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信