油脂酵母星酵母中抑制脂质积累相关基因 SLA1 的鉴定和特征描述

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rikako Sato, Harutake Yamazaki, Kazuki Mori, Sachiyo Aburatani, Koji Ishiya, Yosuke Shida, Wataru Ogasawara, Kosuke Tashiro, Satoru Kuhara, Hiroaki Takaku
{"title":"油脂酵母星酵母中抑制脂质积累相关基因 SLA1 的鉴定和特征描述","authors":"Rikako Sato, Harutake Yamazaki, Kazuki Mori, Sachiyo Aburatani, Koji Ishiya, Yosuke Shida, Wataru Ogasawara, Kosuke Tashiro, Satoru Kuhara, Hiroaki Takaku","doi":"10.1093/bbb/zbae107","DOIUrl":null,"url":null,"abstract":"<p><p>The oleaginous yeast Lipomyces starkeyi is an attractive industrial yeast that can accumulate high amounts of intracellular lipids. Identification of genes involved in lipid accumulation contributes not only to elucidating the lipid accumulation mechanism but also to breeding industrially useful high lipid-producing strains. In this study, the suppressed lipid accumulation-related gene (SLA1) was identified as the causative gene of the sr22 mutant with decreased lipid productivity. Suppressed lipid accumulation-related gene mutation reduced gene expression in lipid biosynthesis and increased gene expression in β-oxidation. Our results suggest that SLA1 mutation may leads to decreased lipid productivity. Suppressed lipid accumulation-related gene deletion also exhibited decreased gene expression in β-oxidation and increased lipid accumulation, suggesting that SLA1 deletion is a useful tool to improve lipid accumulation in L. starkeyi for industrialization.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of the suppressed lipid accumulation-related gene, SLA1, in the oleaginous yeast Lipomyces starkeyi.\",\"authors\":\"Rikako Sato, Harutake Yamazaki, Kazuki Mori, Sachiyo Aburatani, Koji Ishiya, Yosuke Shida, Wataru Ogasawara, Kosuke Tashiro, Satoru Kuhara, Hiroaki Takaku\",\"doi\":\"10.1093/bbb/zbae107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The oleaginous yeast Lipomyces starkeyi is an attractive industrial yeast that can accumulate high amounts of intracellular lipids. Identification of genes involved in lipid accumulation contributes not only to elucidating the lipid accumulation mechanism but also to breeding industrially useful high lipid-producing strains. In this study, the suppressed lipid accumulation-related gene (SLA1) was identified as the causative gene of the sr22 mutant with decreased lipid productivity. Suppressed lipid accumulation-related gene mutation reduced gene expression in lipid biosynthesis and increased gene expression in β-oxidation. Our results suggest that SLA1 mutation may leads to decreased lipid productivity. Suppressed lipid accumulation-related gene deletion also exhibited decreased gene expression in β-oxidation and increased lipid accumulation, suggesting that SLA1 deletion is a useful tool to improve lipid accumulation in L. starkeyi for industrialization.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae107\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae107","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

含油酵母星形脂酵母(Lipomyces starkeyi)是一种极具吸引力的工业酵母,可在细胞内积累大量脂质。鉴定参与脂质积累的基因不仅有助于阐明脂质积累机理,还有助于培育出对工业有用的高产脂菌株。本研究发现,抑制脂质积累相关基因(SLA1)是导致 sr22 突变体脂质生产率下降的致病基因。SLA1 突变降低了脂质生物合成基因的表达,而增加了β-氧化基因的表达。我们的结果表明,SLA1突变可能导致脂质生产率降低。SLA1 基因缺失也表现出了β-氧化基因表达的减少和脂质积累的增加,这表明 SLA1 基因缺失是提高 L. starkeyi 脂质积累以实现工业化的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and characterization of the suppressed lipid accumulation-related gene, SLA1, in the oleaginous yeast Lipomyces starkeyi.

The oleaginous yeast Lipomyces starkeyi is an attractive industrial yeast that can accumulate high amounts of intracellular lipids. Identification of genes involved in lipid accumulation contributes not only to elucidating the lipid accumulation mechanism but also to breeding industrially useful high lipid-producing strains. In this study, the suppressed lipid accumulation-related gene (SLA1) was identified as the causative gene of the sr22 mutant with decreased lipid productivity. Suppressed lipid accumulation-related gene mutation reduced gene expression in lipid biosynthesis and increased gene expression in β-oxidation. Our results suggest that SLA1 mutation may leads to decreased lipid productivity. Suppressed lipid accumulation-related gene deletion also exhibited decreased gene expression in β-oxidation and increased lipid accumulation, suggesting that SLA1 deletion is a useful tool to improve lipid accumulation in L. starkeyi for industrialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信