Mitchell St Clair-Glover, Rocio K Finol-Urdaneta, Marnie Maddock, Eileen Wallace, Sara Miellet, Gordon Wallace, Zhilian Yue, Mirella Dottori
{"title":"利用可诱导的神经原蛋白-2 人类多能干细胞系高效制造三维生物打印功能性感觉神经元。","authors":"Mitchell St Clair-Glover, Rocio K Finol-Urdaneta, Marnie Maddock, Eileen Wallace, Sara Miellet, Gordon Wallace, Zhilian Yue, Mirella Dottori","doi":"10.1088/1758-5090/ad69c4","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging. In this context, we present an accelerated approach to fabricate 3D sensory neuron (SN) structures using a transgenic human pluripotent stem cell (hPSC)-line that contains an inducible Neurogenin-2 (NGN2) expression cassette. The NGN2 hPSC line was first differentiated to neural crest cell (NCC) progenitors, then incorporated into a cytocompatible gelatin methacryloyl-based bioink for 3D bioprinting. Upregulated NGN2 expression in the bioprinted NCCs resulted in induced SN (iSN) populations that exhibited specific cell markers, with 3D analysis revealing widespread neurite outgrowth through the scaffold volume. Calcium imaging demonstrated functional activity of iSNs, including membrane excitability properties and voltage-gated sodium channel (Na<i><sub>V</sub></i>) activity. This efficient approach to generate 3D bioprinted iSN structures streamlines the development of neural tissue models, useful for the study of neurodevelopment and disease states and offering translational potential.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient fabrication of 3D bioprinted functional sensory neurons using an inducible Neurogenin-2 human pluripotent stem cell line.\",\"authors\":\"Mitchell St Clair-Glover, Rocio K Finol-Urdaneta, Marnie Maddock, Eileen Wallace, Sara Miellet, Gordon Wallace, Zhilian Yue, Mirella Dottori\",\"doi\":\"10.1088/1758-5090/ad69c4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging. In this context, we present an accelerated approach to fabricate 3D sensory neuron (SN) structures using a transgenic human pluripotent stem cell (hPSC)-line that contains an inducible Neurogenin-2 (NGN2) expression cassette. The NGN2 hPSC line was first differentiated to neural crest cell (NCC) progenitors, then incorporated into a cytocompatible gelatin methacryloyl-based bioink for 3D bioprinting. Upregulated NGN2 expression in the bioprinted NCCs resulted in induced SN (iSN) populations that exhibited specific cell markers, with 3D analysis revealing widespread neurite outgrowth through the scaffold volume. Calcium imaging demonstrated functional activity of iSNs, including membrane excitability properties and voltage-gated sodium channel (Na<i><sub>V</sub></i>) activity. This efficient approach to generate 3D bioprinted iSN structures streamlines the development of neural tissue models, useful for the study of neurodevelopment and disease states and offering translational potential.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ad69c4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad69c4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Efficient fabrication of 3D bioprinted functional sensory neurons using an inducible Neurogenin-2 human pluripotent stem cell line.
Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging. In this context, we present an accelerated approach to fabricate 3D sensory neuron (SN) structures using a transgenic human pluripotent stem cell (hPSC)-line that contains an inducible Neurogenin-2 (NGN2) expression cassette. The NGN2 hPSC line was first differentiated to neural crest cell (NCC) progenitors, then incorporated into a cytocompatible gelatin methacryloyl-based bioink for 3D bioprinting. Upregulated NGN2 expression in the bioprinted NCCs resulted in induced SN (iSN) populations that exhibited specific cell markers, with 3D analysis revealing widespread neurite outgrowth through the scaffold volume. Calcium imaging demonstrated functional activity of iSNs, including membrane excitability properties and voltage-gated sodium channel (NaV) activity. This efficient approach to generate 3D bioprinted iSN structures streamlines the development of neural tissue models, useful for the study of neurodevelopment and disease states and offering translational potential.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).