{"title":"参与冠状动脉疾病和肺动脉高压的共同致病靶基因 CNTN1 具有诊断冠状动脉疾病的潜力。","authors":"Kun Cheng, Qixuan Zhai, Jieqiong Song, Bing Liu","doi":"10.14744/AnatolJCardiol.2024.4331","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We aimed to find a gene for coronary artery disease (CAD) early diagnosis by detecting co-pathogenic target gene involved in CAD and pulmonary arterial hypertension (PAH). Methods: Datasets were obtained from the Gene Expression Omnibus (GEO) database, including GSE113079, GSE113439, and GSE12288, to investigate gene expression patterns in cardiovascular diseases. Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify gene modules associated with clinical traits. Differential gene expression analysis and functional enrichment analysis were carried out. Protein-protein interaction (PPI) networks were constructed. JASPAR database and FIMO tool were utilized to predict transcription factor (TF) binding sites. Results: Fifteen key genes were identified in CAD and PAH, with CNTN1 being prioritized for further investigation due to its high connectivity degree. Upstream regulation analysis identified potential TFs (DRGX, HOXD3, and RAX) and 7 miRNAs targeting CNTN1. The expression profile of CNTN1 was significantly upregulated in CAD samples, and ROC analysis indicated potential diagnostic value for CAD. CMap database analysis predicted potential targeted drugs for CAD. Conclusion: CNTN1 was detected as a co-pathogenetic gene for CAD and PAH. It is highly expressed in CAD patients and has potential value for CAD diagnosis. CNTN1 is potentially regulated by 3 TFs and 7 miRNAs.</p>","PeriodicalId":7835,"journal":{"name":"Anatolian Journal of Cardiology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317787/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Co-pathogenic Target Gene CNTN1 Involved in Coronary Artery Disease and Pulmonary Arterial Hypertension Has Potential for Diagnosis of Coronary Artery Disease.\",\"authors\":\"Kun Cheng, Qixuan Zhai, Jieqiong Song, Bing Liu\",\"doi\":\"10.14744/AnatolJCardiol.2024.4331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We aimed to find a gene for coronary artery disease (CAD) early diagnosis by detecting co-pathogenic target gene involved in CAD and pulmonary arterial hypertension (PAH). Methods: Datasets were obtained from the Gene Expression Omnibus (GEO) database, including GSE113079, GSE113439, and GSE12288, to investigate gene expression patterns in cardiovascular diseases. Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify gene modules associated with clinical traits. Differential gene expression analysis and functional enrichment analysis were carried out. Protein-protein interaction (PPI) networks were constructed. JASPAR database and FIMO tool were utilized to predict transcription factor (TF) binding sites. Results: Fifteen key genes were identified in CAD and PAH, with CNTN1 being prioritized for further investigation due to its high connectivity degree. Upstream regulation analysis identified potential TFs (DRGX, HOXD3, and RAX) and 7 miRNAs targeting CNTN1. The expression profile of CNTN1 was significantly upregulated in CAD samples, and ROC analysis indicated potential diagnostic value for CAD. CMap database analysis predicted potential targeted drugs for CAD. Conclusion: CNTN1 was detected as a co-pathogenetic gene for CAD and PAH. It is highly expressed in CAD patients and has potential value for CAD diagnosis. CNTN1 is potentially regulated by 3 TFs and 7 miRNAs.</p>\",\"PeriodicalId\":7835,\"journal\":{\"name\":\"Anatolian Journal of Cardiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317787/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatolian Journal of Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14744/AnatolJCardiol.2024.4331\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatolian Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14744/AnatolJCardiol.2024.4331","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
The Co-pathogenic Target Gene CNTN1 Involved in Coronary Artery Disease and Pulmonary Arterial Hypertension Has Potential for Diagnosis of Coronary Artery Disease.
Background: We aimed to find a gene for coronary artery disease (CAD) early diagnosis by detecting co-pathogenic target gene involved in CAD and pulmonary arterial hypertension (PAH).
Methods: Datasets were obtained from the Gene Expression Omnibus (GEO) database, including GSE113079, GSE113439, and GSE12288, to investigate gene expression patterns in cardiovascular diseases. Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify gene modules associated with clinical traits. Differential gene expression analysis and functional enrichment analysis were carried out. Protein-protein interaction (PPI) networks were constructed. JASPAR database and FIMO tool were utilized to predict transcription factor (TF) binding sites.
Results: Fifteen key genes were identified in CAD and PAH, with CNTN1 being prioritized for further investigation due to its high connectivity degree. Upstream regulation analysis identified potential TFs (DRGX, HOXD3, and RAX) and 7 miRNAs targeting CNTN1. The expression profile of CNTN1 was significantly upregulated in CAD samples, and ROC analysis indicated potential diagnostic value for CAD. CMap database analysis predicted potential targeted drugs for CAD.
Conclusion: CNTN1 was detected as a co-pathogenetic gene for CAD and PAH. It is highly expressed in CAD patients and has potential value for CAD diagnosis. CNTN1 is potentially regulated by 3 TFs and 7 miRNAs.
期刊介绍:
The Anatolian Journal of Cardiology is an international monthly periodical on cardiology published on independent, unbiased, double-blinded and peer-review principles. The journal’s publication language is English.
The Anatolian Journal of Cardiology aims to publish qualified and original clinical, experimental and basic research on cardiology at the international level. The journal’s scope also covers editorial comments, reviews of innovations in medical education and practice, case reports, original images, scientific letters, educational articles, letters to the editor, articles on publication ethics, diagnostic puzzles, and issues in social cardiology.
The target readership includes academic members, specialists, residents, and general practitioners working in the fields of adult cardiology, pediatric cardiology, cardiovascular surgery and internal medicine.