用钇稳定氧化锆添加剂制造的新型患者特异性骨膜下植入物的设计与优化。

IF 4.6 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Gunpreet Oberoi , Erik Kornfellner , Daniel Alexander Aigner , Ewald Unger , Martin Schwentenwein , Daniel Bomze , Christoph Staudigl , Dieter Pahr , Francesco Moscato
{"title":"用钇稳定氧化锆添加剂制造的新型患者特异性骨膜下植入物的设计与优化。","authors":"Gunpreet Oberoi ,&nbsp;Erik Kornfellner ,&nbsp;Daniel Alexander Aigner ,&nbsp;Ewald Unger ,&nbsp;Martin Schwentenwein ,&nbsp;Daniel Bomze ,&nbsp;Christoph Staudigl ,&nbsp;Dieter Pahr ,&nbsp;Francesco Moscato","doi":"10.1016/j.dental.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To design a patient-specific subperiosteal implant for a severely atrophic maxillary ridge using yttria-stabilized additively manufactured zirconia (3YSZ) and evaluate its material properties by applying topology optimization (TO) to replace bulk material with a lattice structure.</p></div><div><h3>Materials</h3><p>A contrast-based segmented skull model from anonymized computed tomography data of a patient was used for the initial anatomical design of the implant for the atrophic maxillary ridge. The implant underwent finite element analysis (FEA) and TO under different occlusal load-bearing conditions. The resulting implant designs, in bulk material and lattice, were evaluated via in-silico tensile tests and 3D printed.</p></div><div><h3>Results</h3><p>The workflow produced two patient-specific subperiosteal designs: a) an anatomically precise bulk implant, b) a TO lattice implant. In-silico tensile tests revealed that the Young’s modulus of yttria-stabilized zirconia is 205 GPa for the bulk material and 83.3 GPa for the lattice. Maximum principal stresses in the implant were 61.14 MPa in bulk material and 278.63 MPa in lattice, both tolerable, indicating the redesigned implant can withstand occlusal forces of 125–250 N per abutment. Furthermore, TO achieved a 13.10 % mass reduction and 208.71 % increased surface area, suggesting improved osteointegration potential.</p></div><div><h3>Significance</h3><p>The study demonstrates the planning and optimization of ceramic implant topology. A further iteration of the implant was successfully implanted in a patient-named use case, employing the same fabrication process and parameters.</p></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"40 10","pages":"Pages 1568-1574"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0109564124002136/pdfft?md5=9e3ec24f1bfea8198f564ca1ab6d7e4c&pid=1-s2.0-S0109564124002136-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of a novel patient-specific subperiosteal implant additively manufactured in yttria-stabilized zirconia\",\"authors\":\"Gunpreet Oberoi ,&nbsp;Erik Kornfellner ,&nbsp;Daniel Alexander Aigner ,&nbsp;Ewald Unger ,&nbsp;Martin Schwentenwein ,&nbsp;Daniel Bomze ,&nbsp;Christoph Staudigl ,&nbsp;Dieter Pahr ,&nbsp;Francesco Moscato\",\"doi\":\"10.1016/j.dental.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>To design a patient-specific subperiosteal implant for a severely atrophic maxillary ridge using yttria-stabilized additively manufactured zirconia (3YSZ) and evaluate its material properties by applying topology optimization (TO) to replace bulk material with a lattice structure.</p></div><div><h3>Materials</h3><p>A contrast-based segmented skull model from anonymized computed tomography data of a patient was used for the initial anatomical design of the implant for the atrophic maxillary ridge. The implant underwent finite element analysis (FEA) and TO under different occlusal load-bearing conditions. The resulting implant designs, in bulk material and lattice, were evaluated via in-silico tensile tests and 3D printed.</p></div><div><h3>Results</h3><p>The workflow produced two patient-specific subperiosteal designs: a) an anatomically precise bulk implant, b) a TO lattice implant. In-silico tensile tests revealed that the Young’s modulus of yttria-stabilized zirconia is 205 GPa for the bulk material and 83.3 GPa for the lattice. Maximum principal stresses in the implant were 61.14 MPa in bulk material and 278.63 MPa in lattice, both tolerable, indicating the redesigned implant can withstand occlusal forces of 125–250 N per abutment. Furthermore, TO achieved a 13.10 % mass reduction and 208.71 % increased surface area, suggesting improved osteointegration potential.</p></div><div><h3>Significance</h3><p>The study demonstrates the planning and optimization of ceramic implant topology. A further iteration of the implant was successfully implanted in a patient-named use case, employing the same fabrication process and parameters.</p></div>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\"40 10\",\"pages\":\"Pages 1568-1574\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0109564124002136/pdfft?md5=9e3ec24f1bfea8198f564ca1ab6d7e4c&pid=1-s2.0-S0109564124002136-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0109564124002136\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124002136","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的使用钇稳定添加剂制造的氧化锆(3YSZ)为严重萎缩的上颌嵴设计患者专用的骨膜下种植体,并通过应用拓扑优化(TO)以晶格结构取代块状材料来评估其材料特性:根据患者的匿名计算机断层扫描数据建立了基于对比度的颅骨模型,用于上颌萎缩嵴种植体的初步解剖设计。该种植体在不同的咬合承载条件下进行了有限元分析(FEA)和TO分析。最终的种植体设计,包括块状材料和晶格,都通过了室内拉伸试验评估,并进行了三维打印:结果:该工作流程产生了两种针对特定患者的骨膜下设计:a)解剖精确的块状种植体;b)TO 格状种植体。硅内拉伸测试表明,块状材料钇稳定氧化锆的杨氏模量为 205 GPa,晶格材料的杨氏模量为 83.3 GPa。种植体的最大主应力为61.14兆帕,晶格为278.63兆帕,两者都是可以承受的,这表明重新设计的种植体可以承受每个基台125-250牛顿的咬合力。此外,TO 的质量减少了 13.10%,表面积增加了 208.71%,表明骨结合潜力得到了改善:该研究展示了陶瓷种植体拓扑结构的规划和优化。采用相同的制造工艺和参数,该种植体的进一步迭代已成功植入患者指定的病例中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and optimization of a novel patient-specific subperiosteal implant additively manufactured in yttria-stabilized zirconia

Objective

To design a patient-specific subperiosteal implant for a severely atrophic maxillary ridge using yttria-stabilized additively manufactured zirconia (3YSZ) and evaluate its material properties by applying topology optimization (TO) to replace bulk material with a lattice structure.

Materials

A contrast-based segmented skull model from anonymized computed tomography data of a patient was used for the initial anatomical design of the implant for the atrophic maxillary ridge. The implant underwent finite element analysis (FEA) and TO under different occlusal load-bearing conditions. The resulting implant designs, in bulk material and lattice, were evaluated via in-silico tensile tests and 3D printed.

Results

The workflow produced two patient-specific subperiosteal designs: a) an anatomically precise bulk implant, b) a TO lattice implant. In-silico tensile tests revealed that the Young’s modulus of yttria-stabilized zirconia is 205 GPa for the bulk material and 83.3 GPa for the lattice. Maximum principal stresses in the implant were 61.14 MPa in bulk material and 278.63 MPa in lattice, both tolerable, indicating the redesigned implant can withstand occlusal forces of 125–250 N per abutment. Furthermore, TO achieved a 13.10 % mass reduction and 208.71 % increased surface area, suggesting improved osteointegration potential.

Significance

The study demonstrates the planning and optimization of ceramic implant topology. A further iteration of the implant was successfully implanted in a patient-named use case, employing the same fabrication process and parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dental Materials
Dental Materials 工程技术-材料科学:生物材料
CiteScore
9.80
自引率
10.00%
发文量
290
审稿时长
67 days
期刊介绍: Dental Materials publishes original research, review articles, and short communications. Academy of Dental Materials members click here to register for free access to Dental Materials online. The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology. Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信