通过非共价协同作用实现具有机械稳健性和动态可调性的纯水凝胶

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaohui Li, Yu Wu, Mengdi Wu, Jiawei Gao, Yan Zhang, Yongjun Zhang, Tengling Wu, Hui Gao
{"title":"通过非共价协同作用实现具有机械稳健性和动态可调性的纯水凝胶","authors":"Xiaohui Li, Yu Wu, Mengdi Wu, Jiawei Gao, Yan Zhang, Yongjun Zhang, Tengling Wu, Hui Gao","doi":"10.1002/adfm.202409594","DOIUrl":null,"url":null,"abstract":"Zwitterionic hydrogels with exceptional antifouling properties and biocompatibility have gained widespread attention in biomedical applications. However, achieving robust mechanical performance while maintaining high water content within a single-network zwitterionic hydrogel remains challenging. Traditional covalent crosslinking strategies often lead to brittleness and irreversible damage. Herein, a novel acylsemicarbazide-containing carboxybetaine methacrylate (ACBMA) monomer is designed and synthesized that enables the construction of a pure zwitterionic poly(ACBMA) (pACBMA) hydrogel without chemical crosslinkers. The pACBMA hydrogel exhibits high water content exceeding 95% and superior mechanical properties, including compressive fracture stress of 3.92 MPa, compressive strain up to 99% without breaking, and toughness of 212 ± 2.4 kJ m<sup>−</sup><sup>3</sup>, outperforming chemically crosslinked poly(carboxybetaine methacrylate) (pCBMA) hydrogel. Additionally, the pACBMA hydrogel exhibits excellent injectability, moldability, and even recyclability through the preparation of microgels. Through the unique molecular design, the pACBMA hydrogel integrates multiple non-covalent interactions, including hydrogen bonding, electrostatic interactions, polymer chain entanglement, and steric hindrance of the <i>α</i>-methyl group. These interactions synergistically contribute to the combination of high hydration, mechanical robustness, and dynamic tunability. These results provide a new design strategy for constructing high-performance zwitterionic hydrogels with promising potential for diverse biomedical applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pure Zwitterionic Hydrogel with Mechanical Robustness and Dynamic Tunability Enabled by Synergistic Non-Covalent Interactions\",\"authors\":\"Xiaohui Li, Yu Wu, Mengdi Wu, Jiawei Gao, Yan Zhang, Yongjun Zhang, Tengling Wu, Hui Gao\",\"doi\":\"10.1002/adfm.202409594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zwitterionic hydrogels with exceptional antifouling properties and biocompatibility have gained widespread attention in biomedical applications. However, achieving robust mechanical performance while maintaining high water content within a single-network zwitterionic hydrogel remains challenging. Traditional covalent crosslinking strategies often lead to brittleness and irreversible damage. Herein, a novel acylsemicarbazide-containing carboxybetaine methacrylate (ACBMA) monomer is designed and synthesized that enables the construction of a pure zwitterionic poly(ACBMA) (pACBMA) hydrogel without chemical crosslinkers. The pACBMA hydrogel exhibits high water content exceeding 95% and superior mechanical properties, including compressive fracture stress of 3.92 MPa, compressive strain up to 99% without breaking, and toughness of 212 ± 2.4 kJ m<sup>−</sup><sup>3</sup>, outperforming chemically crosslinked poly(carboxybetaine methacrylate) (pCBMA) hydrogel. Additionally, the pACBMA hydrogel exhibits excellent injectability, moldability, and even recyclability through the preparation of microgels. Through the unique molecular design, the pACBMA hydrogel integrates multiple non-covalent interactions, including hydrogen bonding, electrostatic interactions, polymer chain entanglement, and steric hindrance of the <i>α</i>-methyl group. These interactions synergistically contribute to the combination of high hydration, mechanical robustness, and dynamic tunability. These results provide a new design strategy for constructing high-performance zwitterionic hydrogels with promising potential for diverse biomedical applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202409594\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202409594","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有优异防污性能和生物相容性的齐聚物水凝胶在生物医学应用中受到广泛关注。然而,在单网络齐聚物中保持高含水量的同时实现稳健的机械性能仍然具有挑战性。传统的共价交联策略往往会导致脆性和不可逆损伤。本文设计并合成了一种新型含酰基氨基脲的羧基甜菜碱甲基丙烯酸酯(ACBMA)单体,无需化学交联剂即可构建纯粹的聚羧基甜菜碱甲基丙烯酸酯(ACBMA)(pACBMA)水凝胶。这种 pACBMA 水凝胶的含水量超过 95%,具有优异的机械性能,包括压缩断裂应力为 3.92 兆帕,压缩应变高达 99% 而不断裂,韧性为 212 ± 2.4 kJ m-3,优于化学交联聚(甲基丙烯酸羧基甜菜碱)(pCBMA)水凝胶。此外,pACBMA 水凝胶还具有出色的注射性、成型性,甚至可以通过制备微凝胶进行回收利用。通过独特的分子设计,pACBMA 水凝胶整合了多种非共价相互作用,包括氢键、静电作用、聚合物链缠结和 α 甲基的立体阻碍。这些相互作用协同促进了高水合性、机械稳健性和动态可调性的结合。这些结果为构建高性能的齐聚物水凝胶提供了一种新的设计策略,有望用于多种生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pure Zwitterionic Hydrogel with Mechanical Robustness and Dynamic Tunability Enabled by Synergistic Non-Covalent Interactions

Pure Zwitterionic Hydrogel with Mechanical Robustness and Dynamic Tunability Enabled by Synergistic Non-Covalent Interactions
Zwitterionic hydrogels with exceptional antifouling properties and biocompatibility have gained widespread attention in biomedical applications. However, achieving robust mechanical performance while maintaining high water content within a single-network zwitterionic hydrogel remains challenging. Traditional covalent crosslinking strategies often lead to brittleness and irreversible damage. Herein, a novel acylsemicarbazide-containing carboxybetaine methacrylate (ACBMA) monomer is designed and synthesized that enables the construction of a pure zwitterionic poly(ACBMA) (pACBMA) hydrogel without chemical crosslinkers. The pACBMA hydrogel exhibits high water content exceeding 95% and superior mechanical properties, including compressive fracture stress of 3.92 MPa, compressive strain up to 99% without breaking, and toughness of 212 ± 2.4 kJ m3, outperforming chemically crosslinked poly(carboxybetaine methacrylate) (pCBMA) hydrogel. Additionally, the pACBMA hydrogel exhibits excellent injectability, moldability, and even recyclability through the preparation of microgels. Through the unique molecular design, the pACBMA hydrogel integrates multiple non-covalent interactions, including hydrogen bonding, electrostatic interactions, polymer chain entanglement, and steric hindrance of the α-methyl group. These interactions synergistically contribute to the combination of high hydration, mechanical robustness, and dynamic tunability. These results provide a new design strategy for constructing high-performance zwitterionic hydrogels with promising potential for diverse biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信