Iiro Rautsola, Markus Haapala, Leo Huttunen, Ossi Korhonen and Tiina Sikanen
{"title":"通过冷冻干燥固定在硫醇烯微柱阵列上的人肝脏微粒体来延长 HLM 芯片的保质期","authors":"Iiro Rautsola, Markus Haapala, Leo Huttunen, Ossi Korhonen and Tiina Sikanen","doi":"10.1039/D4LC00429A","DOIUrl":null,"url":null,"abstract":"<p >Microfluidic flow reactors functionalized with immobilized human liver microsomes (HLM chips) represent a powerful tool for drug discovery and development by enabling mechanism-based enzyme inhibition studies under flow-through conditions. Additionally, HLM chips may be exploited in streamlined production of human drug metabolites for subsequent microfluidic <em>in vitro</em> organ models or as metabolite standards for drug safety assessment. However, the limited shelf life of the biofunctionalized microreactors generally poses a major barrier to their commercial adaptation in terms of both storage and shipping. The shelf life of the HLM chips in the wetted state is <em>ca.</em> 2–3 weeks only and requires cold storage at 4 °C. In this study, we developed a freeze-drying method for lyophilization of HLMs that are readily immobilized inside microfluidic pillar arrays made from off-stoichiometric thiol–ene polymer. The success of lyophilization was evaluated by monitoring the cytochrome P450 and UDP-glucuronosyltransferase enzyme activities of rehydrated HLMs for several months post-freeze-drying. By adapting the freeze-drying protocol, the HLM chips could be stored at room temperature (protected from light and moisture) for at least 9 months (<em>n</em> = 2 independent batches) and up to 16 months at best, with recovered enzyme activities within 60–120% of the non-freeze-dried control chips. This is a major improvement over the cold-storage requirement and the limited shelf life of the non-freeze-dried HLM chips, which can significantly ease the design of experiments, decrease energy consumption during storage, and reduce the shipping costs with a view to commercial adaptation.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 17","pages":" 4211-4220"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00429a?page=search","citationCount":"0","resultStr":"{\"title\":\"Extending the shelf life of HLM chips through freeze-drying of human liver microsomes immobilized onto thiol–ene micropillar arrays†\",\"authors\":\"Iiro Rautsola, Markus Haapala, Leo Huttunen, Ossi Korhonen and Tiina Sikanen\",\"doi\":\"10.1039/D4LC00429A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microfluidic flow reactors functionalized with immobilized human liver microsomes (HLM chips) represent a powerful tool for drug discovery and development by enabling mechanism-based enzyme inhibition studies under flow-through conditions. Additionally, HLM chips may be exploited in streamlined production of human drug metabolites for subsequent microfluidic <em>in vitro</em> organ models or as metabolite standards for drug safety assessment. However, the limited shelf life of the biofunctionalized microreactors generally poses a major barrier to their commercial adaptation in terms of both storage and shipping. The shelf life of the HLM chips in the wetted state is <em>ca.</em> 2–3 weeks only and requires cold storage at 4 °C. In this study, we developed a freeze-drying method for lyophilization of HLMs that are readily immobilized inside microfluidic pillar arrays made from off-stoichiometric thiol–ene polymer. The success of lyophilization was evaluated by monitoring the cytochrome P450 and UDP-glucuronosyltransferase enzyme activities of rehydrated HLMs for several months post-freeze-drying. By adapting the freeze-drying protocol, the HLM chips could be stored at room temperature (protected from light and moisture) for at least 9 months (<em>n</em> = 2 independent batches) and up to 16 months at best, with recovered enzyme activities within 60–120% of the non-freeze-dried control chips. This is a major improvement over the cold-storage requirement and the limited shelf life of the non-freeze-dried HLM chips, which can significantly ease the design of experiments, decrease energy consumption during storage, and reduce the shipping costs with a view to commercial adaptation.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 17\",\"pages\":\" 4211-4220\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00429a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00429a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00429a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Extending the shelf life of HLM chips through freeze-drying of human liver microsomes immobilized onto thiol–ene micropillar arrays†
Microfluidic flow reactors functionalized with immobilized human liver microsomes (HLM chips) represent a powerful tool for drug discovery and development by enabling mechanism-based enzyme inhibition studies under flow-through conditions. Additionally, HLM chips may be exploited in streamlined production of human drug metabolites for subsequent microfluidic in vitro organ models or as metabolite standards for drug safety assessment. However, the limited shelf life of the biofunctionalized microreactors generally poses a major barrier to their commercial adaptation in terms of both storage and shipping. The shelf life of the HLM chips in the wetted state is ca. 2–3 weeks only and requires cold storage at 4 °C. In this study, we developed a freeze-drying method for lyophilization of HLMs that are readily immobilized inside microfluidic pillar arrays made from off-stoichiometric thiol–ene polymer. The success of lyophilization was evaluated by monitoring the cytochrome P450 and UDP-glucuronosyltransferase enzyme activities of rehydrated HLMs for several months post-freeze-drying. By adapting the freeze-drying protocol, the HLM chips could be stored at room temperature (protected from light and moisture) for at least 9 months (n = 2 independent batches) and up to 16 months at best, with recovered enzyme activities within 60–120% of the non-freeze-dried control chips. This is a major improvement over the cold-storage requirement and the limited shelf life of the non-freeze-dried HLM chips, which can significantly ease the design of experiments, decrease energy consumption during storage, and reduce the shipping costs with a view to commercial adaptation.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.