Zhenhua Gao, Yibo Sun, Ziman Zhu, Na Ni, Shaokun Sun, Mengyao Nie, Weifeng Du, Muhammad Irfan, Lijing Chen, Li Zhang
{"title":"转录因子 LvBBX24 和 LvbZIP44 协调百合花瓣中花青素的积累以应对光照","authors":"Zhenhua Gao, Yibo Sun, Ziman Zhu, Na Ni, Shaokun Sun, Mengyao Nie, Weifeng Du, Muhammad Irfan, Lijing Chen, Li Zhang","doi":"10.1093/hr/uhae211","DOIUrl":null,"url":null,"abstract":"Lily (Lilium spp.), a horticultural crop serving both ornamental and edible functions, derives its coloration primarily from anthocyanins. However, limited studies have been conducted on the accumulation of anthocyanins within lilies. In this study, we cloned a light-induced transcription factor named as LvBBX24 in lilies. Through genetic and biochemical analysis, we determined that LvBBX24 could upregulate the transcription of LvMYB5 and facilitate anthocyanin synthesis. Moreover, we identified that darkness promoted the degradation of LvBBX24 protein. Through screening a yeast library, we identified LvbZIP44 acts as its interacting partner. Genetic testing confirmed that LvbZIP44 also plays a role in promoting lily anthocyanin synthesis. This indicates a potential synergistic regulatory effect between LvBBX24 and LvbZIP44. Our study indicates that LvBBX24 and LvbZIP44 cooperate to regulate anthocyanin accumulation in lily petals. These findings provide compelling evidence supporting the idea that LvBBX24 and LvbZIP44 may form a looped helix surrounding the LvMYB5 promoter region to regulate anthocyanin biosynthesis.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcription Factors LvBBX24 and LvbZIP44 Coordinated Anthocyanin Accumulation in Response to Light in Lily Petals\",\"authors\":\"Zhenhua Gao, Yibo Sun, Ziman Zhu, Na Ni, Shaokun Sun, Mengyao Nie, Weifeng Du, Muhammad Irfan, Lijing Chen, Li Zhang\",\"doi\":\"10.1093/hr/uhae211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lily (Lilium spp.), a horticultural crop serving both ornamental and edible functions, derives its coloration primarily from anthocyanins. However, limited studies have been conducted on the accumulation of anthocyanins within lilies. In this study, we cloned a light-induced transcription factor named as LvBBX24 in lilies. Through genetic and biochemical analysis, we determined that LvBBX24 could upregulate the transcription of LvMYB5 and facilitate anthocyanin synthesis. Moreover, we identified that darkness promoted the degradation of LvBBX24 protein. Through screening a yeast library, we identified LvbZIP44 acts as its interacting partner. Genetic testing confirmed that LvbZIP44 also plays a role in promoting lily anthocyanin synthesis. This indicates a potential synergistic regulatory effect between LvBBX24 and LvbZIP44. Our study indicates that LvBBX24 and LvbZIP44 cooperate to regulate anthocyanin accumulation in lily petals. These findings provide compelling evidence supporting the idea that LvBBX24 and LvbZIP44 may form a looped helix surrounding the LvMYB5 promoter region to regulate anthocyanin biosynthesis.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae211\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae211","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Transcription Factors LvBBX24 and LvbZIP44 Coordinated Anthocyanin Accumulation in Response to Light in Lily Petals
Lily (Lilium spp.), a horticultural crop serving both ornamental and edible functions, derives its coloration primarily from anthocyanins. However, limited studies have been conducted on the accumulation of anthocyanins within lilies. In this study, we cloned a light-induced transcription factor named as LvBBX24 in lilies. Through genetic and biochemical analysis, we determined that LvBBX24 could upregulate the transcription of LvMYB5 and facilitate anthocyanin synthesis. Moreover, we identified that darkness promoted the degradation of LvBBX24 protein. Through screening a yeast library, we identified LvbZIP44 acts as its interacting partner. Genetic testing confirmed that LvbZIP44 also plays a role in promoting lily anthocyanin synthesis. This indicates a potential synergistic regulatory effect between LvBBX24 and LvbZIP44. Our study indicates that LvBBX24 and LvbZIP44 cooperate to regulate anthocyanin accumulation in lily petals. These findings provide compelling evidence supporting the idea that LvBBX24 and LvbZIP44 may form a looped helix surrounding the LvMYB5 promoter region to regulate anthocyanin biosynthesis.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.