静态纳维-斯托克斯方程的双网格稳定有限元法与回溯法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Jing Han, Guangzhi Du
{"title":"静态纳维-斯托克斯方程的双网格稳定有限元法与回溯法","authors":"Jing Han,&nbsp;Guangzhi Du","doi":"10.1007/s10444-024-10180-1","DOIUrl":null,"url":null,"abstract":"<div><p>Based on local Gauss integral technique and backtracking technique, this paper presents and studies three kinds of two-grid stabilized finite element algorithms for the stationary Navier-Stokes equations. The proposed methods consist of deducing a coarse solution on the nonlinear system, updating the solution on a fine mesh via three different methods, and solving a linear correction problem on the coarse mesh to obtain the final solution. The error estimates are derived for the solution approximated by the proposed algorithms. A series of numerical experiments are illustrated to test the applicability and efficiency of our proposed methods, and support the theoretical analysis results.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-grid stabilized finite element methods with backtracking for the stationary Navier-Stokes equations\",\"authors\":\"Jing Han,&nbsp;Guangzhi Du\",\"doi\":\"10.1007/s10444-024-10180-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on local Gauss integral technique and backtracking technique, this paper presents and studies three kinds of two-grid stabilized finite element algorithms for the stationary Navier-Stokes equations. The proposed methods consist of deducing a coarse solution on the nonlinear system, updating the solution on a fine mesh via three different methods, and solving a linear correction problem on the coarse mesh to obtain the final solution. The error estimates are derived for the solution approximated by the proposed algorithms. A series of numerical experiments are illustrated to test the applicability and efficiency of our proposed methods, and support the theoretical analysis results.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10180-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10180-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文基于局部高斯积分技术和回溯技术,提出并研究了静态纳维-斯托克斯方程的三种双网格稳定有限元算法。所提出的方法包括推导非线性系统的粗解,通过三种不同方法更新细网格上的解,以及求解粗网格上的线性修正问题以获得最终解。通过提出的算法得出了近似解的误差估计值。通过一系列数值实验来检验我们提出的方法的适用性和效率,并为理论分析结果提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-grid stabilized finite element methods with backtracking for the stationary Navier-Stokes equations

Based on local Gauss integral technique and backtracking technique, this paper presents and studies three kinds of two-grid stabilized finite element algorithms for the stationary Navier-Stokes equations. The proposed methods consist of deducing a coarse solution on the nonlinear system, updating the solution on a fine mesh via three different methods, and solving a linear correction problem on the coarse mesh to obtain the final solution. The error estimates are derived for the solution approximated by the proposed algorithms. A series of numerical experiments are illustrated to test the applicability and efficiency of our proposed methods, and support the theoretical analysis results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信