{"title":"用于单向图像放大和消磁的金字塔衍射光学网络","authors":"Bijie Bai, Xilin Yang, Tianyi Gan, Jingxi Li, Deniz Mengu, Mona Jarrahi, Aydogan Ozcan","doi":"10.1038/s41377-024-01543-w","DOIUrl":null,"url":null,"abstract":"<p>Diffractive deep neural networks (D<sup>2</sup>NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view. Here, we present a pyramid-structured diffractive optical network design (which we term P-D<sup>2</sup>NN), optimized specifically for unidirectional image magnification and demagnification. In this design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. This P-D<sup>2</sup>NN design creates high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction—achieving the desired unidirectional imaging operation using a much smaller number of diffractive degrees of freedom within the optical processor volume. Furthermore, the P-D<sup>2</sup>NN design maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single wavelength. We also designed a wavelength-multiplexed P-D<sup>2</sup>NN, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. Furthermore, we demonstrate that by cascading multiple unidirectional P-D<sup>2</sup>NN modules, we can achieve higher magnification factors. The efficacy of the P-D<sup>2</sup>NN architecture was also validated experimentally using terahertz illumination, successfully matching our numerical simulations. P-D<sup>2</sup>NN offers a physics-inspired strategy for designing task-specific visual processors.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyramid diffractive optical networks for unidirectional image magnification and demagnification\",\"authors\":\"Bijie Bai, Xilin Yang, Tianyi Gan, Jingxi Li, Deniz Mengu, Mona Jarrahi, Aydogan Ozcan\",\"doi\":\"10.1038/s41377-024-01543-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diffractive deep neural networks (D<sup>2</sup>NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view. Here, we present a pyramid-structured diffractive optical network design (which we term P-D<sup>2</sup>NN), optimized specifically for unidirectional image magnification and demagnification. In this design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. This P-D<sup>2</sup>NN design creates high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction—achieving the desired unidirectional imaging operation using a much smaller number of diffractive degrees of freedom within the optical processor volume. Furthermore, the P-D<sup>2</sup>NN design maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single wavelength. We also designed a wavelength-multiplexed P-D<sup>2</sup>NN, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. Furthermore, we demonstrate that by cascading multiple unidirectional P-D<sup>2</sup>NN modules, we can achieve higher magnification factors. The efficacy of the P-D<sup>2</sup>NN architecture was also validated experimentally using terahertz illumination, successfully matching our numerical simulations. P-D<sup>2</sup>NN offers a physics-inspired strategy for designing task-specific visual processors.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01543-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01543-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Pyramid diffractive optical networks for unidirectional image magnification and demagnification
Diffractive deep neural networks (D2NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view. Here, we present a pyramid-structured diffractive optical network design (which we term P-D2NN), optimized specifically for unidirectional image magnification and demagnification. In this design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. This P-D2NN design creates high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction—achieving the desired unidirectional imaging operation using a much smaller number of diffractive degrees of freedom within the optical processor volume. Furthermore, the P-D2NN design maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single wavelength. We also designed a wavelength-multiplexed P-D2NN, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. Furthermore, we demonstrate that by cascading multiple unidirectional P-D2NN modules, we can achieve higher magnification factors. The efficacy of the P-D2NN architecture was also validated experimentally using terahertz illumination, successfully matching our numerical simulations. P-D2NN offers a physics-inspired strategy for designing task-specific visual processors.