利用人工智能心电图在国际队列中检测肥厚型心肌病:一项外部验证研究。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2024-04-15 eCollection Date: 2024-07-01 DOI:10.1093/ehjdh/ztae029
Konstantinos C Siontis, Mikolaj A Wieczorek, Maren Maanja, David O Hodge, Hyung-Kwan Kim, Hyun-Jung Lee, Heesun Lee, Jaehyun Lim, Chan Soon Park, Rina Ariga, Betty Raman, Masliza Mahmod, Hugh Watkins, Stefan Neubauer, Stephan Windecker, George C M Siontis, Bernard J Gersh, Michael J Ackerman, Zachi I Attia, Paul A Friedman, Peter A Noseworthy
{"title":"利用人工智能心电图在国际队列中检测肥厚型心肌病:一项外部验证研究。","authors":"Konstantinos C Siontis, Mikolaj A Wieczorek, Maren Maanja, David O Hodge, Hyung-Kwan Kim, Hyun-Jung Lee, Heesun Lee, Jaehyun Lim, Chan Soon Park, Rina Ariga, Betty Raman, Masliza Mahmod, Hugh Watkins, Stefan Neubauer, Stephan Windecker, George C M Siontis, Bernard J Gersh, Michael J Ackerman, Zachi I Attia, Paul A Friedman, Peter A Noseworthy","doi":"10.1093/ehjdh/ztae029","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Recently, deep learning artificial intelligence (AI) models have been trained to detect cardiovascular conditions, including hypertrophic cardiomyopathy (HCM), from the 12-lead electrocardiogram (ECG). In this external validation study, we sought to assess the performance of an AI-ECG algorithm for detecting HCM in diverse international cohorts.</p><p><strong>Methods and results: </strong>A convolutional neural network-based AI-ECG algorithm was developed previously in a single-centre North American HCM cohort (Mayo Clinic). This algorithm was applied to the raw 12-lead ECG data of patients with HCM and non-HCM controls from three external cohorts (Bern, Switzerland; Oxford, UK; and Seoul, South Korea). The algorithm's ability to distinguish HCM vs. non-HCM status from the ECG alone was examined. A total of 773 patients with HCM and 3867 non-HCM controls were included across three sites in the merged external validation cohort. The HCM study sample comprised 54.6% East Asian, 43.2% White, and 2.2% Black patients. Median AI-ECG probabilities of HCM were 85% for patients with HCM and 0.3% for controls (<i>P</i> < 0.001). Overall, the AI-ECG algorithm had an area under the receiver operating characteristic curve (AUC) of 0.922 [95% confidence interval (CI) 0.910-0.934], with diagnostic accuracy 86.9%, sensitivity 82.8%, and specificity 87.7% for HCM detection. In age- and sex-matched analysis (case-control ratio 1:2), the AUC was 0.921 (95% CI 0.909-0.934) with accuracy 88.5%, sensitivity 82.8%, and specificity 90.4%.</p><p><strong>Conclusion: </strong>The AI-ECG algorithm determined HCM status from the 12-lead ECG with high accuracy in diverse international cohorts, providing evidence for external validity. The value of this algorithm in improving HCM detection in clinical practice and screening settings requires prospective evaluation.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 4","pages":"416-426"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284003/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypertrophic cardiomyopathy detection with artificial intelligence electrocardiography in international cohorts: an external validation study.\",\"authors\":\"Konstantinos C Siontis, Mikolaj A Wieczorek, Maren Maanja, David O Hodge, Hyung-Kwan Kim, Hyun-Jung Lee, Heesun Lee, Jaehyun Lim, Chan Soon Park, Rina Ariga, Betty Raman, Masliza Mahmod, Hugh Watkins, Stefan Neubauer, Stephan Windecker, George C M Siontis, Bernard J Gersh, Michael J Ackerman, Zachi I Attia, Paul A Friedman, Peter A Noseworthy\",\"doi\":\"10.1093/ehjdh/ztae029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Recently, deep learning artificial intelligence (AI) models have been trained to detect cardiovascular conditions, including hypertrophic cardiomyopathy (HCM), from the 12-lead electrocardiogram (ECG). In this external validation study, we sought to assess the performance of an AI-ECG algorithm for detecting HCM in diverse international cohorts.</p><p><strong>Methods and results: </strong>A convolutional neural network-based AI-ECG algorithm was developed previously in a single-centre North American HCM cohort (Mayo Clinic). This algorithm was applied to the raw 12-lead ECG data of patients with HCM and non-HCM controls from three external cohorts (Bern, Switzerland; Oxford, UK; and Seoul, South Korea). The algorithm's ability to distinguish HCM vs. non-HCM status from the ECG alone was examined. A total of 773 patients with HCM and 3867 non-HCM controls were included across three sites in the merged external validation cohort. The HCM study sample comprised 54.6% East Asian, 43.2% White, and 2.2% Black patients. Median AI-ECG probabilities of HCM were 85% for patients with HCM and 0.3% for controls (<i>P</i> < 0.001). Overall, the AI-ECG algorithm had an area under the receiver operating characteristic curve (AUC) of 0.922 [95% confidence interval (CI) 0.910-0.934], with diagnostic accuracy 86.9%, sensitivity 82.8%, and specificity 87.7% for HCM detection. In age- and sex-matched analysis (case-control ratio 1:2), the AUC was 0.921 (95% CI 0.909-0.934) with accuracy 88.5%, sensitivity 82.8%, and specificity 90.4%.</p><p><strong>Conclusion: </strong>The AI-ECG algorithm determined HCM status from the 12-lead ECG with high accuracy in diverse international cohorts, providing evidence for external validity. The value of this algorithm in improving HCM detection in clinical practice and screening settings requires prospective evaluation.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"5 4\",\"pages\":\"416-426\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284003/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:最近,人们对深度学习人工智能(AI)模型进行了训练,以便从十二导联心电图(ECG)中检测包括肥厚型心肌病(HCM)在内的心血管疾病。在这项外部验证研究中,我们试图评估人工智能心电图算法在不同国际队列中检测肥厚性心肌病的性能:之前在北美单中心 HCM 队列(梅奥诊所)中开发了一种基于卷积神经网络的 AI-ECG 算法。该算法应用于三个外部队列(瑞士伯尔尼、英国牛津和韩国首尔)的 HCM 患者和非 HCM 对照组的原始 12 导联心电图数据。该算法仅通过心电图就能区分 HCM 与非 HCM 状态。在合并的外部验证队列中,共纳入了三个地点的 773 名 HCM 患者和 3867 名非 HCM 对照组。HCM 研究样本包括 54.6% 的东亚人、43.2% 的白人和 2.2% 的黑人患者。HCM 患者的 AI-ECG HCM 概率中位数为 85%,对照组为 0.3%(P < 0.001)。总体而言,AI-ECG 算法的接收者工作特征曲线下面积 (AUC) 为 0.922 [95% 置信区间 (CI) 0.910-0.934],对 HCM 检测的诊断准确率为 86.9%,灵敏度为 82.8%,特异性为 87.7%。在年龄和性别匹配分析中(病例对照比为 1:2),AUC 为 0.921(95% CI 0.909-0.934),准确率为 88.5%,灵敏度为 82.8%,特异性为 90.4%:AI-ECG算法在不同的国际队列中通过12导联心电图确定HCM状态的准确性很高,为外部有效性提供了证据。该算法在临床实践和筛查环境中改善 HCM 检测的价值需要进行前瞻性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypertrophic cardiomyopathy detection with artificial intelligence electrocardiography in international cohorts: an external validation study.

Aims: Recently, deep learning artificial intelligence (AI) models have been trained to detect cardiovascular conditions, including hypertrophic cardiomyopathy (HCM), from the 12-lead electrocardiogram (ECG). In this external validation study, we sought to assess the performance of an AI-ECG algorithm for detecting HCM in diverse international cohorts.

Methods and results: A convolutional neural network-based AI-ECG algorithm was developed previously in a single-centre North American HCM cohort (Mayo Clinic). This algorithm was applied to the raw 12-lead ECG data of patients with HCM and non-HCM controls from three external cohorts (Bern, Switzerland; Oxford, UK; and Seoul, South Korea). The algorithm's ability to distinguish HCM vs. non-HCM status from the ECG alone was examined. A total of 773 patients with HCM and 3867 non-HCM controls were included across three sites in the merged external validation cohort. The HCM study sample comprised 54.6% East Asian, 43.2% White, and 2.2% Black patients. Median AI-ECG probabilities of HCM were 85% for patients with HCM and 0.3% for controls (P < 0.001). Overall, the AI-ECG algorithm had an area under the receiver operating characteristic curve (AUC) of 0.922 [95% confidence interval (CI) 0.910-0.934], with diagnostic accuracy 86.9%, sensitivity 82.8%, and specificity 87.7% for HCM detection. In age- and sex-matched analysis (case-control ratio 1:2), the AUC was 0.921 (95% CI 0.909-0.934) with accuracy 88.5%, sensitivity 82.8%, and specificity 90.4%.

Conclusion: The AI-ECG algorithm determined HCM status from the 12-lead ECG with high accuracy in diverse international cohorts, providing evidence for external validity. The value of this algorithm in improving HCM detection in clinical practice and screening settings requires prospective evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信