[利用人工智能识别中老年黄斑变性的生物标志物]。

Die Ophthalmologie Pub Date : 2024-08-01 Epub Date: 2024-07-31 DOI:10.1007/s00347-024-02078-6
Leon von der Emde, Sandrine H Künzel, Maximilian Pfau, Olivier Morelle, Yannick Liermann, Petrus Chang, Kristina Pfau, Sarah Thiele, Frank G Holz
{"title":"[利用人工智能识别中老年黄斑变性的生物标志物]。","authors":"Leon von der Emde, Sandrine H Künzel, Maximilian Pfau, Olivier Morelle, Yannick Liermann, Petrus Chang, Kristina Pfau, Sarah Thiele, Frank G Holz","doi":"10.1007/s00347-024-02078-6","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in imaging and artificial intelligence (AI) have revolutionized the detection, quantification and monitoring for the clinical assessment of intermediate age-related macular degeneration (iAMD). The iAMD incorporates a broad spectrum of manifestations, which range from individual small drusen, hyperpigmentation, hypopigmentation up to early stages of geographical atrophy. Current high-resolution imaging technologies enable an accurate detection and description of anatomical features, such as drusen volumes, hyperreflexive foci and photoreceptor degeneration, which are risk factors that are decisive for prediction of the course of the disease; however, the manual annotation of these features in complex optical coherence tomography (OCT) scans is impractical for the routine clinical practice and research. In this context AI provides a solution by fully automatic segmentation and therefore delivers exact, reproducible and quantitative analyses of AMD-related biomarkers. Furthermore, the application of AI in iAMD facilitates the risk assessment and the development of structural endpoints for new forms of treatment. For example, the quantitative analysis of drusen volume and hyperreflective foci with AI algorithms has shown a correlation with the progression of the disease. These technological advances therefore improve not only the diagnostic precision but also support future targeted treatment strategies and contribute to the prioritized target of personalized medicine in the diagnostics and treatment of AMD.</p>","PeriodicalId":72808,"journal":{"name":"Die Ophthalmologie","volume":" ","pages":"609-615"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Use of artificial intelligence for recognition of biomarkers in intermediate age-related macular degeneration].\",\"authors\":\"Leon von der Emde, Sandrine H Künzel, Maximilian Pfau, Olivier Morelle, Yannick Liermann, Petrus Chang, Kristina Pfau, Sarah Thiele, Frank G Holz\",\"doi\":\"10.1007/s00347-024-02078-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in imaging and artificial intelligence (AI) have revolutionized the detection, quantification and monitoring for the clinical assessment of intermediate age-related macular degeneration (iAMD). The iAMD incorporates a broad spectrum of manifestations, which range from individual small drusen, hyperpigmentation, hypopigmentation up to early stages of geographical atrophy. Current high-resolution imaging technologies enable an accurate detection and description of anatomical features, such as drusen volumes, hyperreflexive foci and photoreceptor degeneration, which are risk factors that are decisive for prediction of the course of the disease; however, the manual annotation of these features in complex optical coherence tomography (OCT) scans is impractical for the routine clinical practice and research. In this context AI provides a solution by fully automatic segmentation and therefore delivers exact, reproducible and quantitative analyses of AMD-related biomarkers. Furthermore, the application of AI in iAMD facilitates the risk assessment and the development of structural endpoints for new forms of treatment. For example, the quantitative analysis of drusen volume and hyperreflective foci with AI algorithms has shown a correlation with the progression of the disease. These technological advances therefore improve not only the diagnostic precision but also support future targeted treatment strategies and contribute to the prioritized target of personalized medicine in the diagnostics and treatment of AMD.</p>\",\"PeriodicalId\":72808,\"journal\":{\"name\":\"Die Ophthalmologie\",\"volume\":\" \",\"pages\":\"609-615\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Die Ophthalmologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00347-024-02078-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Die Ophthalmologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00347-024-02078-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

成像和人工智能(AI)技术的进步彻底改变了中度老年性黄斑变性(iAMD)的检测、量化和临床评估监测。中老年黄斑变性的表现范围很广,从单个的小黄斑、色素沉着、色素减退到早期的地域性萎缩。目前的高分辨率成像技术能够准确检测和描述解剖学特征,如色素沉着体积、过度反射灶和感光器变性,这些都是预测疾病进程的决定性风险因素;然而,在复杂的光学相干断层扫描(OCT)中手动标注这些特征对于常规临床实践和研究来说是不切实际的。在这种情况下,人工智能通过全自动分割提供了一种解决方案,因此可以对与 AMD 相关的生物标志物进行精确、可重复的定量分析。此外,人工智能在 iAMD 中的应用还有助于风险评估和新型治疗结构终点的开发。例如,利用人工智能算法对黑斑体积和高反射灶进行的定量分析显示,黑斑体积和高反射灶与疾病的进展存在相关性。因此,这些技术进步不仅提高了诊断的精确度,还支持未来的靶向治疗策略,并有助于在诊断和治疗老年黄斑病变方面优先实现个性化医疗的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Use of artificial intelligence for recognition of biomarkers in intermediate age-related macular degeneration].

Advances in imaging and artificial intelligence (AI) have revolutionized the detection, quantification and monitoring for the clinical assessment of intermediate age-related macular degeneration (iAMD). The iAMD incorporates a broad spectrum of manifestations, which range from individual small drusen, hyperpigmentation, hypopigmentation up to early stages of geographical atrophy. Current high-resolution imaging technologies enable an accurate detection and description of anatomical features, such as drusen volumes, hyperreflexive foci and photoreceptor degeneration, which are risk factors that are decisive for prediction of the course of the disease; however, the manual annotation of these features in complex optical coherence tomography (OCT) scans is impractical for the routine clinical practice and research. In this context AI provides a solution by fully automatic segmentation and therefore delivers exact, reproducible and quantitative analyses of AMD-related biomarkers. Furthermore, the application of AI in iAMD facilitates the risk assessment and the development of structural endpoints for new forms of treatment. For example, the quantitative analysis of drusen volume and hyperreflective foci with AI algorithms has shown a correlation with the progression of the disease. These technological advances therefore improve not only the diagnostic precision but also support future targeted treatment strategies and contribute to the prioritized target of personalized medicine in the diagnostics and treatment of AMD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信