大鼠和人类骨盆底肌肉结构设计中的性别二态性

IF 1.7 4区 医学 Q4 BIOPHYSICS
Megan R Routzong, Mary M Rieger, Mark S Cook, Ramya Ukkan, Marianna Alperin
{"title":"大鼠和人类骨盆底肌肉结构设计中的性别二态性","authors":"Megan R Routzong, Mary M Rieger, Mark S Cook, Ramya Ukkan, Marianna Alperin","doi":"10.1115/1.4066090","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle architecture is a strong predictor of in vivo functional capacity and is evaluated in fixed tissues, accommodating the study of human muscles from cadaveric donors. Previous studies evaluating the pelvic floor muscles (PFMs) demonstrated that the rat is the most appropriate small animal model for the study of female PFM architecture, but the rat's suitability for the study of male PFMs is undetermined. We aimed to determine (1) whether PFM architecture exhibits sexual dimorphism in rats or humans, and (2) if the rat is also a suitable animal model for the study of male human PFMs. PFMs were fixed in situ and harvested en bloc from male and female cadaveric donors and 3-month-old male and female Sprague-Dawley rats. Three architectural parameters influenced by species size were used to compare male versus female PFMs within species, while four size-independent measures compared species within sex. All comparisons were made with two-way analysis of variances and Tukey's multiple comparisons tests post hoc. Sarcomere length (rats and humans, p = 0.016 and = 0.002) and normalized fiber length (rats, p < 0.001) were significantly larger in male PFMs. Three of the size-independent measures exhibited similar species trends in both sexes, while the size-independent sarcomere length measure (Ls/Lso) differed between male rats and humans (p < 0.001). Thus, sexual dimorphism is present in rat and human PFM architecture, and the male rat is suitable for studies of human male PFMs.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sexual Dimorphism in the Architectural Design of Rat and Human Pelvic Floor Muscles.\",\"authors\":\"Megan R Routzong, Mary M Rieger, Mark S Cook, Ramya Ukkan, Marianna Alperin\",\"doi\":\"10.1115/1.4066090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle architecture is a strong predictor of in vivo functional capacity and is evaluated in fixed tissues, accommodating the study of human muscles from cadaveric donors. Previous studies evaluating the pelvic floor muscles (PFMs) demonstrated that the rat is the most appropriate small animal model for the study of female PFM architecture, but the rat's suitability for the study of male PFMs is undetermined. We aimed to determine (1) whether PFM architecture exhibits sexual dimorphism in rats or humans, and (2) if the rat is also a suitable animal model for the study of male human PFMs. PFMs were fixed in situ and harvested en bloc from male and female cadaveric donors and 3-month-old male and female Sprague-Dawley rats. Three architectural parameters influenced by species size were used to compare male versus female PFMs within species, while four size-independent measures compared species within sex. All comparisons were made with two-way analysis of variances and Tukey's multiple comparisons tests post hoc. Sarcomere length (rats and humans, p = 0.016 and = 0.002) and normalized fiber length (rats, p < 0.001) were significantly larger in male PFMs. Three of the size-independent measures exhibited similar species trends in both sexes, while the size-independent sarcomere length measure (Ls/Lso) differed between male rats and humans (p < 0.001). Thus, sexual dimorphism is present in rat and human PFM architecture, and the male rat is suitable for studies of human male PFMs.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4066090\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4066090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌结构是体内功能能力的有力预测指标,并可在固定组织中进行评估,因此可对尸体捐献者的人体肌肉进行研究。之前对骨盆底肌(PFMs)进行的评估研究表明,大鼠是研究雌性骨盆底肌结构最合适的小型动物模型,但大鼠是否适合研究雄性骨盆底肌尚未确定。我们的目的是确定:1)大鼠或人类的 PFM 结构是否表现出性双态性;2)大鼠是否也是研究男性人类 PFM 的合适动物模型。从雌雄尸体供体和 3 个月大的雌雄 Sprague-Dawley 大鼠身上原位固定并整块采集 PFM。三个受物种大小影响的结构参数用于比较物种内雌雄 PFM,而 4 个与物种大小无关的指标用于比较性别内的物种。所有比较均采用双向方差分析和 Tukey's 多重比较检验进行。肌节长度(大鼠和人类,p=0.016 和 =0.002)和归一化纤维长度(大鼠,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sexual Dimorphism in the Architectural Design of Rat and Human Pelvic Floor Muscles.

Skeletal muscle architecture is a strong predictor of in vivo functional capacity and is evaluated in fixed tissues, accommodating the study of human muscles from cadaveric donors. Previous studies evaluating the pelvic floor muscles (PFMs) demonstrated that the rat is the most appropriate small animal model for the study of female PFM architecture, but the rat's suitability for the study of male PFMs is undetermined. We aimed to determine (1) whether PFM architecture exhibits sexual dimorphism in rats or humans, and (2) if the rat is also a suitable animal model for the study of male human PFMs. PFMs were fixed in situ and harvested en bloc from male and female cadaveric donors and 3-month-old male and female Sprague-Dawley rats. Three architectural parameters influenced by species size were used to compare male versus female PFMs within species, while four size-independent measures compared species within sex. All comparisons were made with two-way analysis of variances and Tukey's multiple comparisons tests post hoc. Sarcomere length (rats and humans, p = 0.016 and = 0.002) and normalized fiber length (rats, p < 0.001) were significantly larger in male PFMs. Three of the size-independent measures exhibited similar species trends in both sexes, while the size-independent sarcomere length measure (Ls/Lso) differed between male rats and humans (p < 0.001). Thus, sexual dimorphism is present in rat and human PFM architecture, and the male rat is suitable for studies of human male PFMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信