Victor G. Araujo , Dio P. Alexandrino-Mattos , Thais P. Marinho , Rafael Linden , Hilda Petrs-Silva
{"title":"纵向评估实验性青光眼大鼠模型的形态、功能和血管变化。","authors":"Victor G. Araujo , Dio P. Alexandrino-Mattos , Thais P. Marinho , Rafael Linden , Hilda Petrs-Silva","doi":"10.1016/j.visres.2024.108458","DOIUrl":null,"url":null,"abstract":"<div><p>Glaucoma, the leading cause of irreversible blindness worldwide, is a neurodegenerative disease characterized by chronic axonal damages and progressive loss of retinal ganglion cells, with increased intraocular pressure (IOP) as the primary risk factor. While current treatments focus solely on reducing IOP, understanding glaucoma through experimental models is essential for developing new therapeutic strategies and biomarkers for early diagnosis. Our research group developed an ocular hypertension rat model based on limbal plexus cautery, which provides significant glaucomatous neurodegeneration up to four weeks after injury. We evaluated long-term morphological, functional, and vascular alterations in this model. Our results showed that transient ocular hypertension, lasting approximately one week, can lead to progressive increase in optic nerve cupping and retinal ganglion cells loss. Remarkably, the pressure insult caused several vascular changes, such as arteriolar and venular thinning, and permanent choroidal vascular swelling. This study provides evidence of the longitudinal effects of a pressure insult on retinal structure and function using clinical modalities and techniques. The multifactorial changes reported in this model resemble the complex retinal ganglion cell degeneration found in glaucoma patients, and therefore may also provide a unique tool for the development of novel interventions to either halt or slow down disease progression.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0042698924001020/pdfft?md5=bb13b6568bb2690ca23ecad3a3c7d944&pid=1-s2.0-S0042698924001020-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Longitudinal evaluation of morphological, functional and vascular alterations in a rat model of experimental glaucoma\",\"authors\":\"Victor G. Araujo , Dio P. Alexandrino-Mattos , Thais P. Marinho , Rafael Linden , Hilda Petrs-Silva\",\"doi\":\"10.1016/j.visres.2024.108458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glaucoma, the leading cause of irreversible blindness worldwide, is a neurodegenerative disease characterized by chronic axonal damages and progressive loss of retinal ganglion cells, with increased intraocular pressure (IOP) as the primary risk factor. While current treatments focus solely on reducing IOP, understanding glaucoma through experimental models is essential for developing new therapeutic strategies and biomarkers for early diagnosis. Our research group developed an ocular hypertension rat model based on limbal plexus cautery, which provides significant glaucomatous neurodegeneration up to four weeks after injury. We evaluated long-term morphological, functional, and vascular alterations in this model. Our results showed that transient ocular hypertension, lasting approximately one week, can lead to progressive increase in optic nerve cupping and retinal ganglion cells loss. Remarkably, the pressure insult caused several vascular changes, such as arteriolar and venular thinning, and permanent choroidal vascular swelling. This study provides evidence of the longitudinal effects of a pressure insult on retinal structure and function using clinical modalities and techniques. The multifactorial changes reported in this model resemble the complex retinal ganglion cell degeneration found in glaucoma patients, and therefore may also provide a unique tool for the development of novel interventions to either halt or slow down disease progression.</p></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0042698924001020/pdfft?md5=bb13b6568bb2690ca23ecad3a3c7d944&pid=1-s2.0-S0042698924001020-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698924001020\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698924001020","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Longitudinal evaluation of morphological, functional and vascular alterations in a rat model of experimental glaucoma
Glaucoma, the leading cause of irreversible blindness worldwide, is a neurodegenerative disease characterized by chronic axonal damages and progressive loss of retinal ganglion cells, with increased intraocular pressure (IOP) as the primary risk factor. While current treatments focus solely on reducing IOP, understanding glaucoma through experimental models is essential for developing new therapeutic strategies and biomarkers for early diagnosis. Our research group developed an ocular hypertension rat model based on limbal plexus cautery, which provides significant glaucomatous neurodegeneration up to four weeks after injury. We evaluated long-term morphological, functional, and vascular alterations in this model. Our results showed that transient ocular hypertension, lasting approximately one week, can lead to progressive increase in optic nerve cupping and retinal ganglion cells loss. Remarkably, the pressure insult caused several vascular changes, such as arteriolar and venular thinning, and permanent choroidal vascular swelling. This study provides evidence of the longitudinal effects of a pressure insult on retinal structure and function using clinical modalities and techniques. The multifactorial changes reported in this model resemble the complex retinal ganglion cell degeneration found in glaucoma patients, and therefore may also provide a unique tool for the development of novel interventions to either halt or slow down disease progression.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.