Rania A. Galhom , Saleh Nasser Saleh Ali , Magdy Mohamed Omar El-Fark , Mona Hassan Mohammed Ali , Hoda Hassan Hussein
{"title":"评估脂肪组织间充质干细胞对高脂血症诱导的成年雄性白化大鼠主动脉粥样硬化的疗效。","authors":"Rania A. Galhom , Saleh Nasser Saleh Ali , Magdy Mohamed Omar El-Fark , Mona Hassan Mohammed Ali , Hoda Hassan Hussein","doi":"10.1016/j.tice.2024.102498","DOIUrl":null,"url":null,"abstract":"<div><p>Atherosclerosis (AS) is a common disease seriously detrimental to human health. AS is a chronic progressive disease related to inflammatory reactions. The present study aimed to characterize and evaluate the effects of adipose tissue stem cells (ADSCs) in high-fat diet-induced atherosclerosis in a rat model. The present study comprises thirty-six rats and they were divided into three groups: the control group, the high-fat diet (HFD) group; which received a high-fat diet, and the high-fat diet + stem cells (HFD+SC) group; which was fed with a high-fat diet along with the administration of intravenous ADSCs. Food was given to the animals for 20 weeks to establish dyslipidemia models. After 20 weeks, animals were sacrificed by cervical dislocation; blood was collected to measure total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL); aortae were collected to detect morphologic changes. Rats of the HFD group showed a significant increase in body weight (B.Wt), altered lipid profile increased expression of inducible nitric oxide synthase (iNOS), and decreased expression of endothelial nitric oxide synthase (eNOS). However, in HFD+SC there was a significant decrease in body weight gain and an improvement in lipid profile. Histopathological and ultrastructural variations observed in the aorta of the HFD group when treated with ADSCs showed preserved normal histological architecture and reduced atherosclerosis compared with the HFD group. This was evidenced by laboratory, histological, immunohistochemical, and morphometric studies. Thus, ADSCs reduced TC, TG, and LDL, reduced the expression of iNOS, and increased the expression of eNOS. The high-fat diet was likely to cause damage to the wall of blood vessels. Systemically transplanted ADSCs could home to the aorta, and further protect the aorta from HFD-induced damage.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of therapeutic efficacy of adipose tissue-derived mesenchymal stem cells administration in hyperlipidemia-induced aortic atherosclerosis in adult male albino rats\",\"authors\":\"Rania A. Galhom , Saleh Nasser Saleh Ali , Magdy Mohamed Omar El-Fark , Mona Hassan Mohammed Ali , Hoda Hassan Hussein\",\"doi\":\"10.1016/j.tice.2024.102498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atherosclerosis (AS) is a common disease seriously detrimental to human health. AS is a chronic progressive disease related to inflammatory reactions. The present study aimed to characterize and evaluate the effects of adipose tissue stem cells (ADSCs) in high-fat diet-induced atherosclerosis in a rat model. The present study comprises thirty-six rats and they were divided into three groups: the control group, the high-fat diet (HFD) group; which received a high-fat diet, and the high-fat diet + stem cells (HFD+SC) group; which was fed with a high-fat diet along with the administration of intravenous ADSCs. Food was given to the animals for 20 weeks to establish dyslipidemia models. After 20 weeks, animals were sacrificed by cervical dislocation; blood was collected to measure total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL); aortae were collected to detect morphologic changes. Rats of the HFD group showed a significant increase in body weight (B.Wt), altered lipid profile increased expression of inducible nitric oxide synthase (iNOS), and decreased expression of endothelial nitric oxide synthase (eNOS). However, in HFD+SC there was a significant decrease in body weight gain and an improvement in lipid profile. Histopathological and ultrastructural variations observed in the aorta of the HFD group when treated with ADSCs showed preserved normal histological architecture and reduced atherosclerosis compared with the HFD group. This was evidenced by laboratory, histological, immunohistochemical, and morphometric studies. Thus, ADSCs reduced TC, TG, and LDL, reduced the expression of iNOS, and increased the expression of eNOS. The high-fat diet was likely to cause damage to the wall of blood vessels. Systemically transplanted ADSCs could home to the aorta, and further protect the aorta from HFD-induced damage.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004081662400199X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004081662400199X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Assessment of therapeutic efficacy of adipose tissue-derived mesenchymal stem cells administration in hyperlipidemia-induced aortic atherosclerosis in adult male albino rats
Atherosclerosis (AS) is a common disease seriously detrimental to human health. AS is a chronic progressive disease related to inflammatory reactions. The present study aimed to characterize and evaluate the effects of adipose tissue stem cells (ADSCs) in high-fat diet-induced atherosclerosis in a rat model. The present study comprises thirty-six rats and they were divided into three groups: the control group, the high-fat diet (HFD) group; which received a high-fat diet, and the high-fat diet + stem cells (HFD+SC) group; which was fed with a high-fat diet along with the administration of intravenous ADSCs. Food was given to the animals for 20 weeks to establish dyslipidemia models. After 20 weeks, animals were sacrificed by cervical dislocation; blood was collected to measure total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL); aortae were collected to detect morphologic changes. Rats of the HFD group showed a significant increase in body weight (B.Wt), altered lipid profile increased expression of inducible nitric oxide synthase (iNOS), and decreased expression of endothelial nitric oxide synthase (eNOS). However, in HFD+SC there was a significant decrease in body weight gain and an improvement in lipid profile. Histopathological and ultrastructural variations observed in the aorta of the HFD group when treated with ADSCs showed preserved normal histological architecture and reduced atherosclerosis compared with the HFD group. This was evidenced by laboratory, histological, immunohistochemical, and morphometric studies. Thus, ADSCs reduced TC, TG, and LDL, reduced the expression of iNOS, and increased the expression of eNOS. The high-fat diet was likely to cause damage to the wall of blood vessels. Systemically transplanted ADSCs could home to the aorta, and further protect the aorta from HFD-induced damage.