{"title":"利用生物信息学鉴定皮肌炎和鼻咽癌的共同免疫浸润特征分子:皮肌炎和鼻咽癌的特征。","authors":"Jinyan Kai, Haitao Huang, Jiaqi Su, Qiong Chen","doi":"10.1111/srt.13871","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dermatomyositis (DM) is a kind of dermatologically associated autoimmune disease that is notably associated with an increased risk of concurrent malignancies, although the underlying mechanisms remain to be fully elucidated. The purpose of this investigation was to examine the immunological parallels between DM and nasopharyngeal carcinoma (NPC), with the aim of identifying pivotal biomarkers that could facilitate a deeper understanding and enhance the predictive capabilities of NPC in DM patients.</p><p><strong>Method: </strong>Data for DM and NPC were sourced from the Gene Expression Omnibus (GEO) database. Immune infiltration was analyzed using the \"cibersort\" R package, differentially expressed genes (DEGs) were identified with the \"limma\" package, and functional pathways were investigated through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Characteristic genes were determined by Utilizing Protein-Protein Interaction (PPI) and Least Absolute Shrinkage and Selection Operator (LASSO), and their features were validated using the GSE53819 dataset.</p><p><strong>Results: </strong>In comparison to normal samples, significant infiltration of macrophage M1 was observed in both DM and NPC. The analysis revealed 77 DEGs in DM and 1051 DEGs in NPC, with 22 genes found to be co-DEGs. Following PPI and LASSO analysis, six distinctive genes were retained. Notably, CCL8, IFIH1, CXCL10, and CXCL11 exhibited optimal diagnostic efficacy for NPC and displayed significant correlation with macrophage M1 infiltration within the carcinoma.</p><p><strong>Conclusion: </strong>Four characteristic genes, CCL8, IFIH1, CXCL10, and CXCL11 are risk factors for both DM and NPC. They exhibit a robust correlation with the incidence of NPC and offer a commendable diagnostic efficacy. Furthermore, they may serve as prospective predictive biomarkers for the emergence of NPC in DM.</p>","PeriodicalId":21746,"journal":{"name":"Skin Research and Technology","volume":"30 8","pages":"e13871"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of shared immune infiltration characteristic molecules in dermatomyositis and nasopharyngeal carcinoma using bioinformatics: Traits in dermatomyositis and nasopharyngeal cancer.\",\"authors\":\"Jinyan Kai, Haitao Huang, Jiaqi Su, Qiong Chen\",\"doi\":\"10.1111/srt.13871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dermatomyositis (DM) is a kind of dermatologically associated autoimmune disease that is notably associated with an increased risk of concurrent malignancies, although the underlying mechanisms remain to be fully elucidated. The purpose of this investigation was to examine the immunological parallels between DM and nasopharyngeal carcinoma (NPC), with the aim of identifying pivotal biomarkers that could facilitate a deeper understanding and enhance the predictive capabilities of NPC in DM patients.</p><p><strong>Method: </strong>Data for DM and NPC were sourced from the Gene Expression Omnibus (GEO) database. Immune infiltration was analyzed using the \\\"cibersort\\\" R package, differentially expressed genes (DEGs) were identified with the \\\"limma\\\" package, and functional pathways were investigated through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Characteristic genes were determined by Utilizing Protein-Protein Interaction (PPI) and Least Absolute Shrinkage and Selection Operator (LASSO), and their features were validated using the GSE53819 dataset.</p><p><strong>Results: </strong>In comparison to normal samples, significant infiltration of macrophage M1 was observed in both DM and NPC. The analysis revealed 77 DEGs in DM and 1051 DEGs in NPC, with 22 genes found to be co-DEGs. Following PPI and LASSO analysis, six distinctive genes were retained. Notably, CCL8, IFIH1, CXCL10, and CXCL11 exhibited optimal diagnostic efficacy for NPC and displayed significant correlation with macrophage M1 infiltration within the carcinoma.</p><p><strong>Conclusion: </strong>Four characteristic genes, CCL8, IFIH1, CXCL10, and CXCL11 are risk factors for both DM and NPC. They exhibit a robust correlation with the incidence of NPC and offer a commendable diagnostic efficacy. Furthermore, they may serve as prospective predictive biomarkers for the emergence of NPC in DM.</p>\",\"PeriodicalId\":21746,\"journal\":{\"name\":\"Skin Research and Technology\",\"volume\":\"30 8\",\"pages\":\"e13871\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skin Research and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/srt.13871\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skin Research and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/srt.13871","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Identification of shared immune infiltration characteristic molecules in dermatomyositis and nasopharyngeal carcinoma using bioinformatics: Traits in dermatomyositis and nasopharyngeal cancer.
Background: Dermatomyositis (DM) is a kind of dermatologically associated autoimmune disease that is notably associated with an increased risk of concurrent malignancies, although the underlying mechanisms remain to be fully elucidated. The purpose of this investigation was to examine the immunological parallels between DM and nasopharyngeal carcinoma (NPC), with the aim of identifying pivotal biomarkers that could facilitate a deeper understanding and enhance the predictive capabilities of NPC in DM patients.
Method: Data for DM and NPC were sourced from the Gene Expression Omnibus (GEO) database. Immune infiltration was analyzed using the "cibersort" R package, differentially expressed genes (DEGs) were identified with the "limma" package, and functional pathways were investigated through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Characteristic genes were determined by Utilizing Protein-Protein Interaction (PPI) and Least Absolute Shrinkage and Selection Operator (LASSO), and their features were validated using the GSE53819 dataset.
Results: In comparison to normal samples, significant infiltration of macrophage M1 was observed in both DM and NPC. The analysis revealed 77 DEGs in DM and 1051 DEGs in NPC, with 22 genes found to be co-DEGs. Following PPI and LASSO analysis, six distinctive genes were retained. Notably, CCL8, IFIH1, CXCL10, and CXCL11 exhibited optimal diagnostic efficacy for NPC and displayed significant correlation with macrophage M1 infiltration within the carcinoma.
Conclusion: Four characteristic genes, CCL8, IFIH1, CXCL10, and CXCL11 are risk factors for both DM and NPC. They exhibit a robust correlation with the incidence of NPC and offer a commendable diagnostic efficacy. Furthermore, they may serve as prospective predictive biomarkers for the emergence of NPC in DM.
期刊介绍:
Skin Research and Technology is a clinically-oriented journal on biophysical methods and imaging techniques and how they are used in dermatology, cosmetology and plastic surgery for noninvasive quantification of skin structure and functions. Papers are invited on the development and validation of methods and their application in the characterization of diseased, abnormal and normal skin.
Topics include blood flow, colorimetry, thermography, evaporimetry, epidermal humidity, desquamation, profilometry, skin mechanics, epiluminiscence microscopy, high-frequency ultrasonography, confocal microscopy, digital imaging, image analysis and computerized evaluation and magnetic resonance. Noninvasive biochemical methods (such as lipids, keratin and tissue water) and the instrumental evaluation of cytological and histological samples are also covered.
The journal has a wide scope and aims to link scientists, clinical researchers and technicians through original articles, communications, editorials and commentaries, letters, reviews, announcements and news. Contributions should be clear, experimentally sound and novel.