通过定量 DMS 化学图谱高通量测定 RNA 三级接触热力学。

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bret Lange, Ricardo G Gil, Gavin S Anderson, Joseph D Yesselman
{"title":"通过定量 DMS 化学图谱高通量测定 RNA 三级接触热力学。","authors":"Bret Lange, Ricardo G Gil, Gavin S Anderson, Joseph D Yesselman","doi":"10.1093/nar/gkae633","DOIUrl":null,"url":null,"abstract":"<p><p>Structured RNAs often contain long-range tertiary contacts that are critical to their function. Despite the importance of tertiary contacts, methods to measure their thermodynamics are low throughput or require specialized instruments. Here, we introduce a new quantitative chemical mapping method (qMaPseq) to measure Mg2+-induced formation of tertiary contact thermodynamics in a high-throughput manner using standard biochemistry equipment. With qMaPseq, we measured the ΔG of 98 unique tetraloop/tetraloop receptor (TL/TLR) variants in a one-pot reaction. These results agree well with measurements from specialized instruments (R2= 0.64). Furthermore, the DMS reactivity of the TL directly correlates to the stability of the contact (R2= 0.68), the first direct evidence that a single DMS reactivity measurement reports on thermodynamics. Combined with structure prediction, DMS reactivity allowed the development of experimentally accurate 3D models of TLR mutants. These results demonstrate that qMaPseq is broadly accessible, high-throughput and directly links DMS reactivity to thermodynamics.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput determination of RNA tertiary contact thermodynamics by quantitative DMS chemical mapping.\",\"authors\":\"Bret Lange, Ricardo G Gil, Gavin S Anderson, Joseph D Yesselman\",\"doi\":\"10.1093/nar/gkae633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structured RNAs often contain long-range tertiary contacts that are critical to their function. Despite the importance of tertiary contacts, methods to measure their thermodynamics are low throughput or require specialized instruments. Here, we introduce a new quantitative chemical mapping method (qMaPseq) to measure Mg2+-induced formation of tertiary contact thermodynamics in a high-throughput manner using standard biochemistry equipment. With qMaPseq, we measured the ΔG of 98 unique tetraloop/tetraloop receptor (TL/TLR) variants in a one-pot reaction. These results agree well with measurements from specialized instruments (R2= 0.64). Furthermore, the DMS reactivity of the TL directly correlates to the stability of the contact (R2= 0.68), the first direct evidence that a single DMS reactivity measurement reports on thermodynamics. Combined with structure prediction, DMS reactivity allowed the development of experimentally accurate 3D models of TLR mutants. These results demonstrate that qMaPseq is broadly accessible, high-throughput and directly links DMS reactivity to thermodynamics.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae633\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae633","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结构化 RNA 通常包含对其功能至关重要的长程三级接触。尽管三级接触非常重要,但测量其热力学的方法通量较低或需要专业仪器。在这里,我们介绍了一种新的定量化学图谱方法(qMaPseq),利用标准的生物化学设备,以高通量的方式测量 Mg2+ 诱导形成的三级接触热力学。利用 qMaPseq,我们在一锅反应中测量了 98 种独特的四环/四环受体(TL/TLR)变体的 ΔG。这些结果与专业仪器的测量结果非常吻合(R2= 0.64)。此外,TL 的二甲基亚砜反应性与接触的稳定性直接相关(R2= 0.68),这是单次二甲基亚砜反应性测量报告热力学的首个直接证据。将 DMS 反应性与结构预测相结合,可以建立实验精确的 TLR 突变体三维模型。这些结果表明 qMaPseq 具有广泛的可及性和高通量性,并能将 DMS 反应性与热力学直接联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-throughput determination of RNA tertiary contact thermodynamics by quantitative DMS chemical mapping.

Structured RNAs often contain long-range tertiary contacts that are critical to their function. Despite the importance of tertiary contacts, methods to measure their thermodynamics are low throughput or require specialized instruments. Here, we introduce a new quantitative chemical mapping method (qMaPseq) to measure Mg2+-induced formation of tertiary contact thermodynamics in a high-throughput manner using standard biochemistry equipment. With qMaPseq, we measured the ΔG of 98 unique tetraloop/tetraloop receptor (TL/TLR) variants in a one-pot reaction. These results agree well with measurements from specialized instruments (R2= 0.64). Furthermore, the DMS reactivity of the TL directly correlates to the stability of the contact (R2= 0.68), the first direct evidence that a single DMS reactivity measurement reports on thermodynamics. Combined with structure prediction, DMS reactivity allowed the development of experimentally accurate 3D models of TLR mutants. These results demonstrate that qMaPseq is broadly accessible, high-throughput and directly links DMS reactivity to thermodynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信