{"title":"鼠伤寒沙门氏菌在环丙沙星治疗下改变半乳糖醇代谢,以平衡抗药性和毒力。","authors":"Qiwei Chen, Yongfeng Yu, Yongchang Xu, Heng Quan, Donghui Liu, Caiyu Li, Mengyao Liu, Xiaowei Gong","doi":"10.1128/jb.00178-24","DOIUrl":null,"url":null,"abstract":"<p><p>Ciprofloxacin-resistant <i>Salmonella</i> Typhimurium (<i>S.</i> Typhimurium) causes a significant health burden worldwide. A wealth of studies has been published on the contributions of different mechanisms to ciprofloxacin resistance in <i>Salmonella</i> spp. But we still lack a deep understanding of the physiological responses and genetic changes that underlie ciprofloxacin exposure. This study aims to know how phenotypic and genotypic characteristics are impacted by ciprofloxacin exposure, from ciprofloxacin-susceptible to ciprofloxacin-resistant strains <i>in vitro</i>. Here, we investigated the multistep evolution of resistance in replicate populations of <i>S.</i> Typhimurium during 24 days of continuously increasing ciprofloxacin exposure and assessed how ciprofloxacin impacts physiology and genetics. Numerous studies have demonstrated that RamA is a global transcriptional regulator that prominently perturbs the transcriptional landscape of <i>S.</i> Typhimurium, resulting in a ciprofloxacin-resistant phenotype appearing first; the quinolone resistance-determining region mutation site can only be detected later. Comparing the microbial physiological changes and RNA sequencing (RNA-Seq) results of ancestral and selectable mutant strains, the selectable mutant strains had some fitness costs, such as decreased virulence, an increase of biofilm-forming ability, a change of \"collateral\" sensitivity to other drugs, and inability to utilize galactitol. Importantly, in the ciprofloxacin induced, RamA directly binds and activates the <i>gatR</i> gene responsible for the utilization of galactitol, but RamA deletion strains could not activate <i>gatR</i>. The elevated levels of RamA, which inhibit the galactitol metabolic pathway through the activation of <i>gatR</i>, can lead to a reduction in the growth rate, adhesion, and colonization resistance of <i>S</i>. Typhimurium. This finding is supported by studies conducted in M9 medium as well as <i>in vivo</i> infection models.</p><p><strong>Importance: </strong>Treatment of antibiotic resistance can significantly benefit from a deeper understanding of the interactions between drugs and genetics. The physiological responses and genetic mechanisms in antibiotic-exposed bacteria are not well understood. Traditional resistance studies, often retrospective, fail to capture the entire resistance development process and typically exhibit unpredictable dynamics. To explore how clinical isolates of <i>S.</i> Typhimurium respond to ciprofloxacin, we analyzed their adaptive responses. We found that <i>S.</i> Typhimurium RamA-mediated regulation disrupts microbial metabolism under ciprofloxacin exposure, affecting genes in the galactitol metabolic pathways. This disruption facilitates adaptive responses to drug therapy and enhances the efficiency of intracellular survival. A more comprehensive and integrated understanding of these physiological and genetic changes is crucial for improving treatment outcomes.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0017824"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340313/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Salmonella</i> Typhimurium alters galactitol metabolism under ciprofloxacin treatment to balance resistance and virulence.\",\"authors\":\"Qiwei Chen, Yongfeng Yu, Yongchang Xu, Heng Quan, Donghui Liu, Caiyu Li, Mengyao Liu, Xiaowei Gong\",\"doi\":\"10.1128/jb.00178-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ciprofloxacin-resistant <i>Salmonella</i> Typhimurium (<i>S.</i> Typhimurium) causes a significant health burden worldwide. A wealth of studies has been published on the contributions of different mechanisms to ciprofloxacin resistance in <i>Salmonella</i> spp. But we still lack a deep understanding of the physiological responses and genetic changes that underlie ciprofloxacin exposure. This study aims to know how phenotypic and genotypic characteristics are impacted by ciprofloxacin exposure, from ciprofloxacin-susceptible to ciprofloxacin-resistant strains <i>in vitro</i>. Here, we investigated the multistep evolution of resistance in replicate populations of <i>S.</i> Typhimurium during 24 days of continuously increasing ciprofloxacin exposure and assessed how ciprofloxacin impacts physiology and genetics. Numerous studies have demonstrated that RamA is a global transcriptional regulator that prominently perturbs the transcriptional landscape of <i>S.</i> Typhimurium, resulting in a ciprofloxacin-resistant phenotype appearing first; the quinolone resistance-determining region mutation site can only be detected later. Comparing the microbial physiological changes and RNA sequencing (RNA-Seq) results of ancestral and selectable mutant strains, the selectable mutant strains had some fitness costs, such as decreased virulence, an increase of biofilm-forming ability, a change of \\\"collateral\\\" sensitivity to other drugs, and inability to utilize galactitol. Importantly, in the ciprofloxacin induced, RamA directly binds and activates the <i>gatR</i> gene responsible for the utilization of galactitol, but RamA deletion strains could not activate <i>gatR</i>. The elevated levels of RamA, which inhibit the galactitol metabolic pathway through the activation of <i>gatR</i>, can lead to a reduction in the growth rate, adhesion, and colonization resistance of <i>S</i>. Typhimurium. This finding is supported by studies conducted in M9 medium as well as <i>in vivo</i> infection models.</p><p><strong>Importance: </strong>Treatment of antibiotic resistance can significantly benefit from a deeper understanding of the interactions between drugs and genetics. The physiological responses and genetic mechanisms in antibiotic-exposed bacteria are not well understood. Traditional resistance studies, often retrospective, fail to capture the entire resistance development process and typically exhibit unpredictable dynamics. To explore how clinical isolates of <i>S.</i> Typhimurium respond to ciprofloxacin, we analyzed their adaptive responses. We found that <i>S.</i> Typhimurium RamA-mediated regulation disrupts microbial metabolism under ciprofloxacin exposure, affecting genes in the galactitol metabolic pathways. This disruption facilitates adaptive responses to drug therapy and enhances the efficiency of intracellular survival. A more comprehensive and integrated understanding of these physiological and genetic changes is crucial for improving treatment outcomes.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0017824\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340313/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00178-24\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00178-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Salmonella Typhimurium alters galactitol metabolism under ciprofloxacin treatment to balance resistance and virulence.
Ciprofloxacin-resistant Salmonella Typhimurium (S. Typhimurium) causes a significant health burden worldwide. A wealth of studies has been published on the contributions of different mechanisms to ciprofloxacin resistance in Salmonella spp. But we still lack a deep understanding of the physiological responses and genetic changes that underlie ciprofloxacin exposure. This study aims to know how phenotypic and genotypic characteristics are impacted by ciprofloxacin exposure, from ciprofloxacin-susceptible to ciprofloxacin-resistant strains in vitro. Here, we investigated the multistep evolution of resistance in replicate populations of S. Typhimurium during 24 days of continuously increasing ciprofloxacin exposure and assessed how ciprofloxacin impacts physiology and genetics. Numerous studies have demonstrated that RamA is a global transcriptional regulator that prominently perturbs the transcriptional landscape of S. Typhimurium, resulting in a ciprofloxacin-resistant phenotype appearing first; the quinolone resistance-determining region mutation site can only be detected later. Comparing the microbial physiological changes and RNA sequencing (RNA-Seq) results of ancestral and selectable mutant strains, the selectable mutant strains had some fitness costs, such as decreased virulence, an increase of biofilm-forming ability, a change of "collateral" sensitivity to other drugs, and inability to utilize galactitol. Importantly, in the ciprofloxacin induced, RamA directly binds and activates the gatR gene responsible for the utilization of galactitol, but RamA deletion strains could not activate gatR. The elevated levels of RamA, which inhibit the galactitol metabolic pathway through the activation of gatR, can lead to a reduction in the growth rate, adhesion, and colonization resistance of S. Typhimurium. This finding is supported by studies conducted in M9 medium as well as in vivo infection models.
Importance: Treatment of antibiotic resistance can significantly benefit from a deeper understanding of the interactions between drugs and genetics. The physiological responses and genetic mechanisms in antibiotic-exposed bacteria are not well understood. Traditional resistance studies, often retrospective, fail to capture the entire resistance development process and typically exhibit unpredictable dynamics. To explore how clinical isolates of S. Typhimurium respond to ciprofloxacin, we analyzed their adaptive responses. We found that S. Typhimurium RamA-mediated regulation disrupts microbial metabolism under ciprofloxacin exposure, affecting genes in the galactitol metabolic pathways. This disruption facilitates adaptive responses to drug therapy and enhances the efficiency of intracellular survival. A more comprehensive and integrated understanding of these physiological and genetic changes is crucial for improving treatment outcomes.
期刊介绍:
The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.