抗氧化剂对公牛精子内源性和外源性氧化应激的保护作用。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Ali Md Younus, Takahiro Yamanaka, Masayuki Shimada
{"title":"抗氧化剂对公牛精子内源性和外源性氧化应激的保护作用。","authors":"Ali Md Younus, Takahiro Yamanaka, Masayuki Shimada","doi":"10.1007/s11626-024-00944-w","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress, caused by both endogenous and exogenous factors, affects sperm function by damaging morphology and reducing metabolic activity, leading to reduced fertilization ability. The purpose of this study was to investigate the effects of oxidative stress on bull sperm and to evaluate the efficacy of targeted antioxidants in mitigating these detrimental effects. Fresh bull semen samples were subjected to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and antimycin treatments to induce oxidative stress, and the antioxidants PQQ, ergothioneine, and vitamin C were applied to counteract the induced stress. Sperm motility, viability, and reactive oxygen species (ROS) levels in the cytoplasm and mitochondria of sperm were assessed using computer-assisted sperm analysis (CASA) and flow cytometry. The treatment with H<sub>2</sub>O<sub>2</sub> rapidly decreased sperm viability, and antimycin-induced mitochondrial ROS mainly decreased sperm motility; PQQ and vitamin C effectively reduced mitochondrial ROS, while ergothioneine and vitamin C reduced cytosolic ROS. In frozen-thawed sperm, oxidative stress was elevated in both cytoplasm and mitochondria, and all three antioxidants improved sperm motility by inhibiting ROS production. Furthermore, the localization of oxidized lipids (4-hydroxynonenal) in sperm was detected using immunofluorescence, indicating that oxidative stress affects the head and midpiece of sperm. These findings highlight the potential of targeted antioxidants to mitigate the detrimental effects of oxidative stress on bull sperm and provide valuable insights to improve semen quality and optimize the use of antioxidants in artificial insemination.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"969-982"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534973/pdf/","citationCount":"0","resultStr":"{\"title\":\"The protective effects of antioxidants against endogenous and exogenous oxidative stress on bull sperm.\",\"authors\":\"Ali Md Younus, Takahiro Yamanaka, Masayuki Shimada\",\"doi\":\"10.1007/s11626-024-00944-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress, caused by both endogenous and exogenous factors, affects sperm function by damaging morphology and reducing metabolic activity, leading to reduced fertilization ability. The purpose of this study was to investigate the effects of oxidative stress on bull sperm and to evaluate the efficacy of targeted antioxidants in mitigating these detrimental effects. Fresh bull semen samples were subjected to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and antimycin treatments to induce oxidative stress, and the antioxidants PQQ, ergothioneine, and vitamin C were applied to counteract the induced stress. Sperm motility, viability, and reactive oxygen species (ROS) levels in the cytoplasm and mitochondria of sperm were assessed using computer-assisted sperm analysis (CASA) and flow cytometry. The treatment with H<sub>2</sub>O<sub>2</sub> rapidly decreased sperm viability, and antimycin-induced mitochondrial ROS mainly decreased sperm motility; PQQ and vitamin C effectively reduced mitochondrial ROS, while ergothioneine and vitamin C reduced cytosolic ROS. In frozen-thawed sperm, oxidative stress was elevated in both cytoplasm and mitochondria, and all three antioxidants improved sperm motility by inhibiting ROS production. Furthermore, the localization of oxidized lipids (4-hydroxynonenal) in sperm was detected using immunofluorescence, indicating that oxidative stress affects the head and midpiece of sperm. These findings highlight the potential of targeted antioxidants to mitigate the detrimental effects of oxidative stress on bull sperm and provide valuable insights to improve semen quality and optimize the use of antioxidants in artificial insemination.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"969-982\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534973/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00944-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00944-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由内源性和外源性因素引起的氧化应激会破坏精子的形态并降低其代谢活性,从而影响精子的功能,导致受精能力下降。本研究的目的是调查氧化应激对公牛精子的影响,并评估靶向抗氧化剂在减轻这些有害影响方面的功效。对新鲜公牛精液样本进行过氧化氢(H2O2)和抗霉素处理以诱导氧化应激,并使用抗氧化剂 PQQ、麦角硫因和维生素 C 来抵消诱导的应激。使用计算机辅助精子分析(CASA)和流式细胞术评估了精子的活力、存活率以及细胞质和线粒体中的活性氧(ROS)水平。H2O2 处理会迅速降低精子活力,而抗霉素诱导的线粒体 ROS 主要会降低精子活力;PQQ 和维生素 C 能有效降低线粒体 ROS,而麦角硫因和维生素 C 能降低细胞质 ROS。在冷冻解冻的精子中,细胞质和线粒体中的氧化应激都升高了,而这三种抗氧化剂都能通过抑制 ROS 的产生来改善精子的活力。此外,使用免疫荧光法检测了精子中氧化脂质(4-羟基壬烯醛)的定位,表明氧化应激影响精子的头部和中段。这些发现凸显了靶向抗氧化剂减轻氧化应激对公牛精子有害影响的潜力,并为提高精液质量和优化人工授精中抗氧化剂的使用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The protective effects of antioxidants against endogenous and exogenous oxidative stress on bull sperm.

The protective effects of antioxidants against endogenous and exogenous oxidative stress on bull sperm.

Oxidative stress, caused by both endogenous and exogenous factors, affects sperm function by damaging morphology and reducing metabolic activity, leading to reduced fertilization ability. The purpose of this study was to investigate the effects of oxidative stress on bull sperm and to evaluate the efficacy of targeted antioxidants in mitigating these detrimental effects. Fresh bull semen samples were subjected to hydrogen peroxide (H2O2) and antimycin treatments to induce oxidative stress, and the antioxidants PQQ, ergothioneine, and vitamin C were applied to counteract the induced stress. Sperm motility, viability, and reactive oxygen species (ROS) levels in the cytoplasm and mitochondria of sperm were assessed using computer-assisted sperm analysis (CASA) and flow cytometry. The treatment with H2O2 rapidly decreased sperm viability, and antimycin-induced mitochondrial ROS mainly decreased sperm motility; PQQ and vitamin C effectively reduced mitochondrial ROS, while ergothioneine and vitamin C reduced cytosolic ROS. In frozen-thawed sperm, oxidative stress was elevated in both cytoplasm and mitochondria, and all three antioxidants improved sperm motility by inhibiting ROS production. Furthermore, the localization of oxidized lipids (4-hydroxynonenal) in sperm was detected using immunofluorescence, indicating that oxidative stress affects the head and midpiece of sperm. These findings highlight the potential of targeted antioxidants to mitigate the detrimental effects of oxidative stress on bull sperm and provide valuable insights to improve semen quality and optimize the use of antioxidants in artificial insemination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信