{"title":"TSHR-IGF-IR复合物驱动甲状腺眼病中的眼眶成纤维细胞行为失常。","authors":"Terry J Smith","doi":"10.1097/MED.0000000000000878","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Evolving understanding of thyroid eye disease (TED) has led to rapidly advancing therapeutic options. Most new treatments under development or recently available to patients are predicated on insights into disease mechanism.</p><p><strong>Recent findings: </strong>TED, a disfiguring process, involves inflammation and remodeling of the connective tissues around the eye. TED most frequently presents as a component of Graves' disease. Advances in our understanding of cells involved in TED and their molecular interactions have led to novel therapeutic targets. Among these cell types are orbital fibroblasts and a subset comprising monocyte progenitor cells, known as CD34 + CXCR4 + fibrocytes. Among the attributes of fibrocytes is their expression of several autoantigens associated with Graves' disease, including TSHR, thyroglobulin and thyroperoxidase. Fibrocytes also express high levels of the insulin-like growth factor-I (IGF-I) receptor, thought to mediate fibroblast activation. Therapeutically targeting the TSHR/IGF-IR receptor complex using an IGF-I receptor antagonist, teprotumumab, has resulted in substantial clinical benefit for patients with TED. The neural axon repellent, Slit2, and its cognate receptor, ROBO1, appear to modulate the inflammatory phenotype of these orbit-infiltrating fibrocytes.</p><p><strong>Summary: </strong>More detailed understanding of orbital fibroblasts and the distinctions between cell subsets comprising them should lead to more effective therapies with fewer side effects.</p>","PeriodicalId":10964,"journal":{"name":"Current Opinion in Endocrinology & Diabetes and Obesity","volume":" ","pages":"177-183"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TSHR-IGF-IR complex drives orbital fibroblast misbehavior in thyroid eye disease.\",\"authors\":\"Terry J Smith\",\"doi\":\"10.1097/MED.0000000000000878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Evolving understanding of thyroid eye disease (TED) has led to rapidly advancing therapeutic options. Most new treatments under development or recently available to patients are predicated on insights into disease mechanism.</p><p><strong>Recent findings: </strong>TED, a disfiguring process, involves inflammation and remodeling of the connective tissues around the eye. TED most frequently presents as a component of Graves' disease. Advances in our understanding of cells involved in TED and their molecular interactions have led to novel therapeutic targets. Among these cell types are orbital fibroblasts and a subset comprising monocyte progenitor cells, known as CD34 + CXCR4 + fibrocytes. Among the attributes of fibrocytes is their expression of several autoantigens associated with Graves' disease, including TSHR, thyroglobulin and thyroperoxidase. Fibrocytes also express high levels of the insulin-like growth factor-I (IGF-I) receptor, thought to mediate fibroblast activation. Therapeutically targeting the TSHR/IGF-IR receptor complex using an IGF-I receptor antagonist, teprotumumab, has resulted in substantial clinical benefit for patients with TED. The neural axon repellent, Slit2, and its cognate receptor, ROBO1, appear to modulate the inflammatory phenotype of these orbit-infiltrating fibrocytes.</p><p><strong>Summary: </strong>More detailed understanding of orbital fibroblasts and the distinctions between cell subsets comprising them should lead to more effective therapies with fewer side effects.</p>\",\"PeriodicalId\":10964,\"journal\":{\"name\":\"Current Opinion in Endocrinology & Diabetes and Obesity\",\"volume\":\" \",\"pages\":\"177-183\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Endocrinology & Diabetes and Obesity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MED.0000000000000878\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Endocrinology & Diabetes and Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MED.0000000000000878","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
TSHR-IGF-IR complex drives orbital fibroblast misbehavior in thyroid eye disease.
Purpose of review: Evolving understanding of thyroid eye disease (TED) has led to rapidly advancing therapeutic options. Most new treatments under development or recently available to patients are predicated on insights into disease mechanism.
Recent findings: TED, a disfiguring process, involves inflammation and remodeling of the connective tissues around the eye. TED most frequently presents as a component of Graves' disease. Advances in our understanding of cells involved in TED and their molecular interactions have led to novel therapeutic targets. Among these cell types are orbital fibroblasts and a subset comprising monocyte progenitor cells, known as CD34 + CXCR4 + fibrocytes. Among the attributes of fibrocytes is their expression of several autoantigens associated with Graves' disease, including TSHR, thyroglobulin and thyroperoxidase. Fibrocytes also express high levels of the insulin-like growth factor-I (IGF-I) receptor, thought to mediate fibroblast activation. Therapeutically targeting the TSHR/IGF-IR receptor complex using an IGF-I receptor antagonist, teprotumumab, has resulted in substantial clinical benefit for patients with TED. The neural axon repellent, Slit2, and its cognate receptor, ROBO1, appear to modulate the inflammatory phenotype of these orbit-infiltrating fibrocytes.
Summary: More detailed understanding of orbital fibroblasts and the distinctions between cell subsets comprising them should lead to more effective therapies with fewer side effects.
期刊介绍:
Current Opinion in Endocrinology, Diabetes and Obesity delivers a broad-based perspective on the most recent and exciting developments in the field from across the world. Published bimonthly and featuring twelve key topics – including androgens, gastrointestinal hormones, diabetes and the endocrine pancreas, and neuroendocrinology – the journal’s renowned team of guest editors ensure a balanced, expert assessment of the recently published literature in each respective field with insightful editorials and on-the-mark invited reviews.