Zengtao Hao, Zhiqi Huo, Qicheng Aixin-Jueluo, Tao Wu, Yihong Chen
{"title":"过表达EGFL7可促进周围神经损伤的血管生成和神经再生。","authors":"Zengtao Hao, Zhiqi Huo, Qicheng Aixin-Jueluo, Tao Wu, Yihong Chen","doi":"10.1002/cbin.12221","DOIUrl":null,"url":null,"abstract":"<p>Peripheral nerve injury (PNI) often leads to significant functional impairment. Here, we investigated the impact of epidermal growth factor-like domain-containing protein 7 (EGFL7) on angiogenesis and nerve regeneration following PNI. Using a sciatic nerve injury model, we assessed nerve function using the sciatic nerve function index. We analyzed the expression levels of EGFL7, forkhead box proteins A1 (FOXA1), nerve growth factor (NGF), brain-derived neurotrophic factors (BDNF), Neurofilament 200 (NF200), myelin protein zero (P0), cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), and NOTCH-related proteins in tissues and cells. Cell proliferation, migration, and angiogenesis were evaluated through cell counting kit assays, 5-ethynyl-2′deoxyuridine staining, and Transwell assays. We investigated the binding of FOXA1 to the EGFL7 promoter using dual-luciferase assays and chromatin immunoprecipitation. We observed decreased EGFL7 expression and increased FOXA1 expression in PNI, and EGFL7 overexpression alleviated gastrocnemius muscle atrophy, increased muscle weight, and improved motor function. Additionally, EGFL7 overexpression enhanced Schwann cell and endothelial cell proliferation and migration, promoted tube formation, and upregulated NGF, BDNF, NF200, P0, CD31, and VEGF expression. FOXA1 was found to bind to the EGFL7 promoter region, inhibiting EGFL7 expression and activating the NOTCH signaling pathway. Notably, FOXA1 overexpression counteracted the effects of EGFL7 on Schwann cells and endothelial cells. In conclusion, EGFL7 holds promise as a therapeutic molecule for treating sciatic nerve injury.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1698-1713"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of EGFL7 promotes angiogenesis and nerve regeneration in peripheral nerve injury\",\"authors\":\"Zengtao Hao, Zhiqi Huo, Qicheng Aixin-Jueluo, Tao Wu, Yihong Chen\",\"doi\":\"10.1002/cbin.12221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Peripheral nerve injury (PNI) often leads to significant functional impairment. Here, we investigated the impact of epidermal growth factor-like domain-containing protein 7 (EGFL7) on angiogenesis and nerve regeneration following PNI. Using a sciatic nerve injury model, we assessed nerve function using the sciatic nerve function index. We analyzed the expression levels of EGFL7, forkhead box proteins A1 (FOXA1), nerve growth factor (NGF), brain-derived neurotrophic factors (BDNF), Neurofilament 200 (NF200), myelin protein zero (P0), cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), and NOTCH-related proteins in tissues and cells. Cell proliferation, migration, and angiogenesis were evaluated through cell counting kit assays, 5-ethynyl-2′deoxyuridine staining, and Transwell assays. We investigated the binding of FOXA1 to the EGFL7 promoter using dual-luciferase assays and chromatin immunoprecipitation. We observed decreased EGFL7 expression and increased FOXA1 expression in PNI, and EGFL7 overexpression alleviated gastrocnemius muscle atrophy, increased muscle weight, and improved motor function. Additionally, EGFL7 overexpression enhanced Schwann cell and endothelial cell proliferation and migration, promoted tube formation, and upregulated NGF, BDNF, NF200, P0, CD31, and VEGF expression. FOXA1 was found to bind to the EGFL7 promoter region, inhibiting EGFL7 expression and activating the NOTCH signaling pathway. Notably, FOXA1 overexpression counteracted the effects of EGFL7 on Schwann cells and endothelial cells. In conclusion, EGFL7 holds promise as a therapeutic molecule for treating sciatic nerve injury.</p>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\"48 11\",\"pages\":\"1698-1713\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12221\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12221","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Overexpression of EGFL7 promotes angiogenesis and nerve regeneration in peripheral nerve injury
Peripheral nerve injury (PNI) often leads to significant functional impairment. Here, we investigated the impact of epidermal growth factor-like domain-containing protein 7 (EGFL7) on angiogenesis and nerve regeneration following PNI. Using a sciatic nerve injury model, we assessed nerve function using the sciatic nerve function index. We analyzed the expression levels of EGFL7, forkhead box proteins A1 (FOXA1), nerve growth factor (NGF), brain-derived neurotrophic factors (BDNF), Neurofilament 200 (NF200), myelin protein zero (P0), cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), and NOTCH-related proteins in tissues and cells. Cell proliferation, migration, and angiogenesis were evaluated through cell counting kit assays, 5-ethynyl-2′deoxyuridine staining, and Transwell assays. We investigated the binding of FOXA1 to the EGFL7 promoter using dual-luciferase assays and chromatin immunoprecipitation. We observed decreased EGFL7 expression and increased FOXA1 expression in PNI, and EGFL7 overexpression alleviated gastrocnemius muscle atrophy, increased muscle weight, and improved motor function. Additionally, EGFL7 overexpression enhanced Schwann cell and endothelial cell proliferation and migration, promoted tube formation, and upregulated NGF, BDNF, NF200, P0, CD31, and VEGF expression. FOXA1 was found to bind to the EGFL7 promoter region, inhibiting EGFL7 expression and activating the NOTCH signaling pathway. Notably, FOXA1 overexpression counteracted the effects of EGFL7 on Schwann cells and endothelial cells. In conclusion, EGFL7 holds promise as a therapeutic molecule for treating sciatic nerve injury.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.