Casper Vindahl Jensen, Emil Vogt, Andras Sun Poulsen, Henrik G Kjaergaard
{"title":"甲醇二聚体、三聚体和四聚体的室温气相平衡常数。","authors":"Casper Vindahl Jensen, Emil Vogt, Andras Sun Poulsen, Henrik G Kjaergaard","doi":"10.1021/acs.jpca.4c02730","DOIUrl":null,"url":null,"abstract":"<p><p>We have detected the methanol dimer, trimer, and tetramer at equilibrium conditions at room temperature in the gas phase using direct absorption Fourier transform infrared spectroscopy. The infrared intensity of the OH-stretching transitions are enhanced upon hydrogen bonding and are increasingly red-shifted with increasing cluster size, facilitating identification and quantification of the various clusters. We calculate the intensities of the bound OH-stretches, OH<sub>b</sub>, for all clusters with a range of reduced dimensional vibrational models with different levels of electronic structure theory. Partial pressures of the clusters are obtained by scaling the measured integrated absorbance of the OH<sub>b</sub>-stretching bands by the calculated intensities of the associated vibrational transitions. We estimate the methanol dimer equilibrium constant, <i>K</i><sub><i>D</i></sub>, to be 0.033, at 298.15 K, which is comparable to that of the water dimer. For the methanol trimer and tetramer, we estimate equilibrium constants for aggregation of monomers of <i>K</i><sub><i>T</i></sub> ∼ 0.04 and <i>K</i><sub><i>Q</i></sub> ∼ 0.6, respectively.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"6382-6391"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room Temperature Gas Phase Equilibrium Constants of the Methanol Dimer, Trimer, and Tetramer.\",\"authors\":\"Casper Vindahl Jensen, Emil Vogt, Andras Sun Poulsen, Henrik G Kjaergaard\",\"doi\":\"10.1021/acs.jpca.4c02730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have detected the methanol dimer, trimer, and tetramer at equilibrium conditions at room temperature in the gas phase using direct absorption Fourier transform infrared spectroscopy. The infrared intensity of the OH-stretching transitions are enhanced upon hydrogen bonding and are increasingly red-shifted with increasing cluster size, facilitating identification and quantification of the various clusters. We calculate the intensities of the bound OH-stretches, OH<sub>b</sub>, for all clusters with a range of reduced dimensional vibrational models with different levels of electronic structure theory. Partial pressures of the clusters are obtained by scaling the measured integrated absorbance of the OH<sub>b</sub>-stretching bands by the calculated intensities of the associated vibrational transitions. We estimate the methanol dimer equilibrium constant, <i>K</i><sub><i>D</i></sub>, to be 0.033, at 298.15 K, which is comparable to that of the water dimer. For the methanol trimer and tetramer, we estimate equilibrium constants for aggregation of monomers of <i>K</i><sub><i>T</i></sub> ∼ 0.04 and <i>K</i><sub><i>Q</i></sub> ∼ 0.6, respectively.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"6382-6391\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c02730\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c02730","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们利用直接吸收傅立叶变换红外光谱法检测了室温气相平衡条件下的甲醇二聚体、三聚体和四聚体。氢键结合后,羟基伸展跃迁的红外强度增强,并且随着簇的增大而红移,从而有助于识别和量化各种簇。我们利用一系列降维振动模型和不同层次的电子结构理论,计算了所有团簇的结合氢氧伸展强度(OHb)。通过将测得的 OHb 伸缩带的综合吸光度与相关振动跃迁的计算强度进行比例运算,可以得到团簇的分压。我们估计甲醇二聚体在 298.15 K 时的平衡常数 KD 为 0.033,与水二聚体的平衡常数相当。对于甲醇三聚体和四聚体,我们估计单体聚集的平衡常数分别为 KT ∼ 0.04 和 KQ ∼ 0.6。
Room Temperature Gas Phase Equilibrium Constants of the Methanol Dimer, Trimer, and Tetramer.
We have detected the methanol dimer, trimer, and tetramer at equilibrium conditions at room temperature in the gas phase using direct absorption Fourier transform infrared spectroscopy. The infrared intensity of the OH-stretching transitions are enhanced upon hydrogen bonding and are increasingly red-shifted with increasing cluster size, facilitating identification and quantification of the various clusters. We calculate the intensities of the bound OH-stretches, OHb, for all clusters with a range of reduced dimensional vibrational models with different levels of electronic structure theory. Partial pressures of the clusters are obtained by scaling the measured integrated absorbance of the OHb-stretching bands by the calculated intensities of the associated vibrational transitions. We estimate the methanol dimer equilibrium constant, KD, to be 0.033, at 298.15 K, which is comparable to that of the water dimer. For the methanol trimer and tetramer, we estimate equilibrium constants for aggregation of monomers of KT ∼ 0.04 and KQ ∼ 0.6, respectively.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.