摩擦力和几何形状在调整拓扑交错材料弯曲刚度中的作用

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tracy Lu , Ziran Zhou , Punnathat Bordeenithikasem , Norman Chung , Diana Frias Franco , Jose E. Andrade , Chiara Daraio
{"title":"摩擦力和几何形状在调整拓扑交错材料弯曲刚度中的作用","authors":"Tracy Lu ,&nbsp;Ziran Zhou ,&nbsp;Punnathat Bordeenithikasem ,&nbsp;Norman Chung ,&nbsp;Diana Frias Franco ,&nbsp;Jose E. Andrade ,&nbsp;Chiara Daraio","doi":"10.1016/j.eml.2024.102212","DOIUrl":null,"url":null,"abstract":"<div><p>Topologically interlocking material (TIM) systems offer adjustable bending stiffness controlled by external pre-stress, as shown in previous studies. This study focuses on a specific TIM system comprised of truncated tetrahedral particles interconnected via tensioned wires. The fabrication process involves weaving nylon wires through 3D printed truncated tetrahedrons that have longitudinal and latitudinal through-holes. By varying the tension applied to the wires, one can systematically control the overall bending stiffness of the TIM system. We change the surface friction and the contact angle between adjacent particles at a fixed wire tension, to study experimentally how they affect the system’s bending response. We inform experiments with Level Set Discrete Element Method (LS-DEM) simulations, to correlate surface friction and contact area changes with the system’s bending modulus. The numerical model is shown to be predictive and could be used in the future to evaluate designs of TIMs.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102212"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of friction and geometry in tuning the bending stiffness of topologically interlocking materials\",\"authors\":\"Tracy Lu ,&nbsp;Ziran Zhou ,&nbsp;Punnathat Bordeenithikasem ,&nbsp;Norman Chung ,&nbsp;Diana Frias Franco ,&nbsp;Jose E. Andrade ,&nbsp;Chiara Daraio\",\"doi\":\"10.1016/j.eml.2024.102212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Topologically interlocking material (TIM) systems offer adjustable bending stiffness controlled by external pre-stress, as shown in previous studies. This study focuses on a specific TIM system comprised of truncated tetrahedral particles interconnected via tensioned wires. The fabrication process involves weaving nylon wires through 3D printed truncated tetrahedrons that have longitudinal and latitudinal through-holes. By varying the tension applied to the wires, one can systematically control the overall bending stiffness of the TIM system. We change the surface friction and the contact angle between adjacent particles at a fixed wire tension, to study experimentally how they affect the system’s bending response. We inform experiments with Level Set Discrete Element Method (LS-DEM) simulations, to correlate surface friction and contact area changes with the system’s bending modulus. The numerical model is shown to be predictive and could be used in the future to evaluate designs of TIMs.</p></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"71 \",\"pages\":\"Article 102212\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431624000920\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000920","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑互锁材料(TIM)系统可通过外部预应力控制可调弯曲刚度,这一点已在之前的研究中有所体现。本研究的重点是一种特定的 TIM 系统,该系统由通过张力线相互连接的截顶四面体颗粒组成。制造过程包括将尼龙丝编织进具有纵向和纬向通孔的 3D 打印截顶四面体中。通过改变施加在金属丝上的张力,可以系统地控制 TIM 系统的整体弯曲刚度。我们改变了固定导线张力下相邻颗粒之间的表面摩擦力和接触角,通过实验研究它们如何影响系统的弯曲响应。我们将实验与水平集离散元素法 (LS-DEM) 模拟相结合,将表面摩擦和接触面积的变化与系统的弯曲模量联系起来。结果表明,该数值模型具有预测性,将来可用于评估 TIM 的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of friction and geometry in tuning the bending stiffness of topologically interlocking materials

Topologically interlocking material (TIM) systems offer adjustable bending stiffness controlled by external pre-stress, as shown in previous studies. This study focuses on a specific TIM system comprised of truncated tetrahedral particles interconnected via tensioned wires. The fabrication process involves weaving nylon wires through 3D printed truncated tetrahedrons that have longitudinal and latitudinal through-holes. By varying the tension applied to the wires, one can systematically control the overall bending stiffness of the TIM system. We change the surface friction and the contact angle between adjacent particles at a fixed wire tension, to study experimentally how they affect the system’s bending response. We inform experiments with Level Set Discrete Element Method (LS-DEM) simulations, to correlate surface friction and contact area changes with the system’s bending modulus. The numerical model is shown to be predictive and could be used in the future to evaluate designs of TIMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信