Zhenjia Peng , Zhe Li , Yu Jiao , Ning Zhang , Qi Zhang , Binbin Zhou , Liyin Gao , Xianzhu Fu , Zhiquan Liu , Rong Sun
{"title":"通过填充再分布层操纵低纵横比电镀铜中的吸附配置","authors":"Zhenjia Peng , Zhe Li , Yu Jiao , Ning Zhang , Qi Zhang , Binbin Zhou , Liyin Gao , Xianzhu Fu , Zhiquan Liu , Rong Sun","doi":"10.1016/j.nanoms.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers (RDL), pillar bumps, through silicon vias, etc. With advances of multilayered RDL, via-on-via structures have been developed for ultrahigh-density any-layer interconnection, which expects superconformal filling of interlayer low aspect-ratio vias jointly with coplanar lines and pads. However, it poses a great challenge to electrodeposition, because current via fill mechanisms are stemming from middle to high aspect-ratio (>0.8) vias and lacking applicability in low aspect-ratio (<0.3) RDL-vias, where via geometry related electric-flow fields coupling must be reconsidered. In the present work, a four-additive strategy has been developed for RDL-vias fill and thoroughly investigated from additive electrochemistry, <em>in situ</em> Raman spectroelectrochemistry, and quantum chemistry perspectives. A novel adsorbate configuration controlled (ACC) electrodeposition mechanism is established that at weak-convection bilateral edges and lower corners, the adsorbate displays a weakly-adsorbing configuration to assist accelerator-governed deposition, whereas at strong-convection center, the adsorbate exhibits a mildly-adsorbing configuration to promote leveler-determined inhibition. Deposit profiles can be tailored from dished, flat to domed, depending on predominance of leveler over accelerator. This study should lay theoretical and practical foundations in design and application of copper electroplating additives of multiple adsorbate configurations to cope with complicated interconnect scenarios.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 4","pages":"Pages 500-510"},"PeriodicalIF":17.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating adsorbate configurations in copper electroplated low aspect-ratio via fill in redistribution layers\",\"authors\":\"Zhenjia Peng , Zhe Li , Yu Jiao , Ning Zhang , Qi Zhang , Binbin Zhou , Liyin Gao , Xianzhu Fu , Zhiquan Liu , Rong Sun\",\"doi\":\"10.1016/j.nanoms.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers (RDL), pillar bumps, through silicon vias, etc. With advances of multilayered RDL, via-on-via structures have been developed for ultrahigh-density any-layer interconnection, which expects superconformal filling of interlayer low aspect-ratio vias jointly with coplanar lines and pads. However, it poses a great challenge to electrodeposition, because current via fill mechanisms are stemming from middle to high aspect-ratio (>0.8) vias and lacking applicability in low aspect-ratio (<0.3) RDL-vias, where via geometry related electric-flow fields coupling must be reconsidered. In the present work, a four-additive strategy has been developed for RDL-vias fill and thoroughly investigated from additive electrochemistry, <em>in situ</em> Raman spectroelectrochemistry, and quantum chemistry perspectives. A novel adsorbate configuration controlled (ACC) electrodeposition mechanism is established that at weak-convection bilateral edges and lower corners, the adsorbate displays a weakly-adsorbing configuration to assist accelerator-governed deposition, whereas at strong-convection center, the adsorbate exhibits a mildly-adsorbing configuration to promote leveler-determined inhibition. Deposit profiles can be tailored from dished, flat to domed, depending on predominance of leveler over accelerator. This study should lay theoretical and practical foundations in design and application of copper electroplating additives of multiple adsorbate configurations to cope with complicated interconnect scenarios.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"7 4\",\"pages\":\"Pages 500-510\"},\"PeriodicalIF\":17.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965124001053\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124001053","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Manipulating adsorbate configurations in copper electroplated low aspect-ratio via fill in redistribution layers
Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers (RDL), pillar bumps, through silicon vias, etc. With advances of multilayered RDL, via-on-via structures have been developed for ultrahigh-density any-layer interconnection, which expects superconformal filling of interlayer low aspect-ratio vias jointly with coplanar lines and pads. However, it poses a great challenge to electrodeposition, because current via fill mechanisms are stemming from middle to high aspect-ratio (>0.8) vias and lacking applicability in low aspect-ratio (<0.3) RDL-vias, where via geometry related electric-flow fields coupling must be reconsidered. In the present work, a four-additive strategy has been developed for RDL-vias fill and thoroughly investigated from additive electrochemistry, in situ Raman spectroelectrochemistry, and quantum chemistry perspectives. A novel adsorbate configuration controlled (ACC) electrodeposition mechanism is established that at weak-convection bilateral edges and lower corners, the adsorbate displays a weakly-adsorbing configuration to assist accelerator-governed deposition, whereas at strong-convection center, the adsorbate exhibits a mildly-adsorbing configuration to promote leveler-determined inhibition. Deposit profiles can be tailored from dished, flat to domed, depending on predominance of leveler over accelerator. This study should lay theoretical and practical foundations in design and application of copper electroplating additives of multiple adsorbate configurations to cope with complicated interconnect scenarios.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.