{"title":"构建多色室温磷光系统的方法","authors":"Zhizheng Li , Qian Yue , Huacheng Zhang , Yanli Zhao","doi":"10.1016/j.mattod.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Room temperature phosphorescent (RTP) materials have attracted much attention due to their potential applications to anti-counterfeiting encryption, optoelectronic devices and biological imaging. While the development of long lifetime afterglow materials is being promoted, the construction of multi-color afterglow materials by modulating the excited state energy through different means is also important. However, the sensitivity of the excited state and the transition mechanism of T<sub>1</sub> result in the limitation of afterglow colors. Therefore, the methods of constructing multi-color RTP materials are summarized into six categories: push–pull electron effect, π-conjugation, molecular aggregation state, multi-component doping, supramolecular self-assembly and multi-mode emission. Based on methodological guidance, the potential applications of multi-color RTP in the fields of optical information storage, bioimaging and intelligent response systems are also discussed. Finally, the construction of multi-color RTP materials is prospected to provide valuable references for the further development of multi-color afterglow regulation methodologies.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"78 ","pages":"Pages 209-230"},"PeriodicalIF":21.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodologies for constructing multi-color room temperature phosphorescent systems\",\"authors\":\"Zhizheng Li , Qian Yue , Huacheng Zhang , Yanli Zhao\",\"doi\":\"10.1016/j.mattod.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Room temperature phosphorescent (RTP) materials have attracted much attention due to their potential applications to anti-counterfeiting encryption, optoelectronic devices and biological imaging. While the development of long lifetime afterglow materials is being promoted, the construction of multi-color afterglow materials by modulating the excited state energy through different means is also important. However, the sensitivity of the excited state and the transition mechanism of T<sub>1</sub> result in the limitation of afterglow colors. Therefore, the methods of constructing multi-color RTP materials are summarized into six categories: push–pull electron effect, π-conjugation, molecular aggregation state, multi-component doping, supramolecular self-assembly and multi-mode emission. Based on methodological guidance, the potential applications of multi-color RTP in the fields of optical information storage, bioimaging and intelligent response systems are also discussed. Finally, the construction of multi-color RTP materials is prospected to provide valuable references for the further development of multi-color afterglow regulation methodologies.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"78 \",\"pages\":\"Pages 209-230\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001354\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001354","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Methodologies for constructing multi-color room temperature phosphorescent systems
Room temperature phosphorescent (RTP) materials have attracted much attention due to their potential applications to anti-counterfeiting encryption, optoelectronic devices and biological imaging. While the development of long lifetime afterglow materials is being promoted, the construction of multi-color afterglow materials by modulating the excited state energy through different means is also important. However, the sensitivity of the excited state and the transition mechanism of T1 result in the limitation of afterglow colors. Therefore, the methods of constructing multi-color RTP materials are summarized into six categories: push–pull electron effect, π-conjugation, molecular aggregation state, multi-component doping, supramolecular self-assembly and multi-mode emission. Based on methodological guidance, the potential applications of multi-color RTP in the fields of optical information storage, bioimaging and intelligent response systems are also discussed. Finally, the construction of multi-color RTP materials is prospected to provide valuable references for the further development of multi-color afterglow regulation methodologies.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.