利用余热实现高效太阳能光伏热制冷:综述

IF 7.1 Q1 ENERGY & FUELS
{"title":"利用余热实现高效太阳能光伏热制冷:综述","authors":"","doi":"10.1016/j.ecmx.2024.100671","DOIUrl":null,"url":null,"abstract":"<div><p>Photovoltaic (PV) systems are popular for their reliability and zero fuel costs. However, only around 20 % of solar energy is converted into electricity, while the remainder is dissipated as waste heat. Excessive waste heat affects the lifespan of PV systems, leading to abnormal operating temperatures. In this notion, Photovoltaic-thermal (PV/T) systems are introduced to extract waste heat through various cooling techniques to harness electrical and thermal energies, demonstrating their capabilities through experimental and modeling techniques. Researchers have sought to develop optimized modeling techniques based on empirical, semi-empirical, and AI-based modeling for efficient execution of PV/T systems. This study reviews the current optimization developments in the PV/T systems, focusing on multiple numerical and experimental designs. Various cooling methods, including air, water, and phase change materials (PCM) with nanofluids, are examined for their promising contributions to electrical and thermal efficiency enhancement. Additionally, optimization methods have been investigated by incorporating automated processes into PV/T systems employing self-automation techniques. These processes aim to reduce the overall cost and establish a self-sustaining performance. Finally, the challenges and recommendations for future research for PV/T enhancement are highlighted.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001491/pdfft?md5=55f6e683fef552d6d10106d2a02030ec&pid=1-s2.0-S2590174524001491-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards highly efficient solar photovoltaic thermal cooling by waste heat utilization: A review\",\"authors\":\"\",\"doi\":\"10.1016/j.ecmx.2024.100671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photovoltaic (PV) systems are popular for their reliability and zero fuel costs. However, only around 20 % of solar energy is converted into electricity, while the remainder is dissipated as waste heat. Excessive waste heat affects the lifespan of PV systems, leading to abnormal operating temperatures. In this notion, Photovoltaic-thermal (PV/T) systems are introduced to extract waste heat through various cooling techniques to harness electrical and thermal energies, demonstrating their capabilities through experimental and modeling techniques. Researchers have sought to develop optimized modeling techniques based on empirical, semi-empirical, and AI-based modeling for efficient execution of PV/T systems. This study reviews the current optimization developments in the PV/T systems, focusing on multiple numerical and experimental designs. Various cooling methods, including air, water, and phase change materials (PCM) with nanofluids, are examined for their promising contributions to electrical and thermal efficiency enhancement. Additionally, optimization methods have been investigated by incorporating automated processes into PV/T systems employing self-automation techniques. These processes aim to reduce the overall cost and establish a self-sustaining performance. Finally, the challenges and recommendations for future research for PV/T enhancement are highlighted.</p></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001491/pdfft?md5=55f6e683fef552d6d10106d2a02030ec&pid=1-s2.0-S2590174524001491-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

光伏(PV)系统因其可靠性和零燃料成本而广受欢迎。然而,只有约 20% 的太阳能转化为电能,其余的则作为余热散失。过多的废热会影响光伏系统的使用寿命,导致工作温度异常。在这一概念中,引入了光伏-热(PV/T)系统,通过各种冷却技术提取废热,以利用电能和热能,并通过实验和建模技术展示其能力。研究人员一直致力于开发基于经验、半经验和人工智能建模的优化建模技术,以高效执行 PV/T 系统。本研究回顾了 PV/T 系统当前的优化发展,重点关注多种数值和实验设计。研究考察了各种冷却方法,包括空气、水和带有纳米流体的相变材料 (PCM),以了解它们对提高电气和热效率的贡献。此外,还研究了优化方法,将采用自控技术的自动化流程纳入 PV/T 系统。这些过程旨在降低总体成本,并建立自我维持的性能。最后,还强调了未来研究在提高 PV/T 性能方面所面临的挑战和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards highly efficient solar photovoltaic thermal cooling by waste heat utilization: A review

Photovoltaic (PV) systems are popular for their reliability and zero fuel costs. However, only around 20 % of solar energy is converted into electricity, while the remainder is dissipated as waste heat. Excessive waste heat affects the lifespan of PV systems, leading to abnormal operating temperatures. In this notion, Photovoltaic-thermal (PV/T) systems are introduced to extract waste heat through various cooling techniques to harness electrical and thermal energies, demonstrating their capabilities through experimental and modeling techniques. Researchers have sought to develop optimized modeling techniques based on empirical, semi-empirical, and AI-based modeling for efficient execution of PV/T systems. This study reviews the current optimization developments in the PV/T systems, focusing on multiple numerical and experimental designs. Various cooling methods, including air, water, and phase change materials (PCM) with nanofluids, are examined for their promising contributions to electrical and thermal efficiency enhancement. Additionally, optimization methods have been investigated by incorporating automated processes into PV/T systems employing self-automation techniques. These processes aim to reduce the overall cost and establish a self-sustaining performance. Finally, the challenges and recommendations for future research for PV/T enhancement are highlighted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信