大型潮间带入口和泻湖的次重力波观测与建模

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"大型潮间带入口和泻湖的次重力波观测与建模","authors":"","doi":"10.1016/j.coastaleng.2024.104579","DOIUrl":null,"url":null,"abstract":"<div><p>The role of infragravity waves (IG waves) in beach and dune erosion or in flood hazard has been extensively studied on open beaches. In contrast, the detailed characterization of IG waves and their contribution to the Total Water Level (TWL) along the shore of inlets received little attention so far. In such environment, there is a real lack of <em>in situ</em> observations of waves and hydrodynamics conditions at appropriate spatial and temporal coverage to study the role of infragravity (IG) waves (long waves of frequency typically ranging between 0.004 Hz and 0.04–0.05 Hz) on coastal hazards. This contribution is based on field observations collected at the Arcachon Lagoon, a shallow semi-enclosed lagoon connected to the ocean by a large tidal inlet, located in southwest France. Analyses combine observations made at several locations during storm events within the inlet and the lagoon with numerical simulation with the XBeach surfbeat model to explore the spatial variability of IG waves and simulate observed, historical, and idealized storm conditions. The results show that IG waves are substantial during typical winter storms at the inlet and range from <em>H</em><sub><em>m0</em></sub> = 0.8 to over 1 m across the ebb delta and about 0.4–0.6 m in the inner part of the inlet. At the lagoon entrance, IG waves remain substantial (about 0.1–0.2 m) and decrease to a few centimeters at the lagoon shore. The spatial variability and magnitude of IG waves along the inlet coast, simulated for the historical storms, are quite comparable to those observed during classical winter, and do not increase linearly with offshore wave energy. However, both observations and simulations reveal local amplifications of IG waves in the inner part of the inlet, especially along the sheltered coast were IG waves dominate the variance of free surface elevation, reaching about 0.6–0.7 m during common storms and more than 1 m for an extreme storm scenario. A numerical experiment indicates that IG wave reflection from one coast to the other contributes up to 35–40% of the measured IG wave height at a hot spot located along the sheltered coast. Finally, the contribution of IG waves to TWL at the shore on both sides of the inlet has been estimated to be about 0.4–0.6 m for a common storm and 0.6–0.9 m for an extreme scenario, locally peaking at 0.74 and 1.1 m respectively and overpassing the contribution of wave-induced setup. This work provides new insights into the contribution of IG waves to TWL and its implications for overtopping flooding hazard and overwash processes at large inlets, highlighting the need to consider IG waves in Early Warning Systems or hazard mapping for flood prevention plans in these environments.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation and modelling of infragravity waves at a large meso-tidal inlet and lagoon\",\"authors\":\"\",\"doi\":\"10.1016/j.coastaleng.2024.104579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of infragravity waves (IG waves) in beach and dune erosion or in flood hazard has been extensively studied on open beaches. In contrast, the detailed characterization of IG waves and their contribution to the Total Water Level (TWL) along the shore of inlets received little attention so far. In such environment, there is a real lack of <em>in situ</em> observations of waves and hydrodynamics conditions at appropriate spatial and temporal coverage to study the role of infragravity (IG) waves (long waves of frequency typically ranging between 0.004 Hz and 0.04–0.05 Hz) on coastal hazards. This contribution is based on field observations collected at the Arcachon Lagoon, a shallow semi-enclosed lagoon connected to the ocean by a large tidal inlet, located in southwest France. Analyses combine observations made at several locations during storm events within the inlet and the lagoon with numerical simulation with the XBeach surfbeat model to explore the spatial variability of IG waves and simulate observed, historical, and idealized storm conditions. The results show that IG waves are substantial during typical winter storms at the inlet and range from <em>H</em><sub><em>m0</em></sub> = 0.8 to over 1 m across the ebb delta and about 0.4–0.6 m in the inner part of the inlet. At the lagoon entrance, IG waves remain substantial (about 0.1–0.2 m) and decrease to a few centimeters at the lagoon shore. The spatial variability and magnitude of IG waves along the inlet coast, simulated for the historical storms, are quite comparable to those observed during classical winter, and do not increase linearly with offshore wave energy. However, both observations and simulations reveal local amplifications of IG waves in the inner part of the inlet, especially along the sheltered coast were IG waves dominate the variance of free surface elevation, reaching about 0.6–0.7 m during common storms and more than 1 m for an extreme storm scenario. A numerical experiment indicates that IG wave reflection from one coast to the other contributes up to 35–40% of the measured IG wave height at a hot spot located along the sheltered coast. Finally, the contribution of IG waves to TWL at the shore on both sides of the inlet has been estimated to be about 0.4–0.6 m for a common storm and 0.6–0.9 m for an extreme scenario, locally peaking at 0.74 and 1.1 m respectively and overpassing the contribution of wave-induced setup. This work provides new insights into the contribution of IG waves to TWL and its implications for overtopping flooding hazard and overwash processes at large inlets, highlighting the need to consider IG waves in Early Warning Systems or hazard mapping for flood prevention plans in these environments.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001273\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001273","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

关于次重力波(IG 波)在海滩和沙丘侵蚀或洪水灾害中的作用,人们已经在开阔的海滩上进行了广泛的研究。相比之下,迄今为止,人们很少关注内湾沿岸次重力波的详细特征及其对总水位(TWL)的影响。在这种环境下,要研究次重力波(频率通常在 0.004 Hz 和 0.04-0.05 Hz 之间的长波)对沿岸灾害的作用,确实缺乏在适当的时空范围内对波浪和水动力条件的现场观测。这篇论文基于在阿卡雄泻湖收集的实地观测数据,阿卡雄泻湖是一个半封闭的浅泻湖,由一个大的潮汐入口与海洋相连,位于法国西南部。分析结合了在入海口和泻湖内风暴事件期间在多个地点进行的观测,以及 XBeach surfbeat 模型的数值模拟,以探索 IG 波的空间可变性,并模拟观测到的、历史上的和理想化的风暴条件。结果表明,在典型的冬季风暴期间,入海口的 IG 波很大,整个退潮三角洲的范围从 Hm0 = 0.8 到超过 1 米,入海口内部约为 0.4-0.6 米。在泻湖入口处,IG 波仍然很大(约 0.1-0.2 米),在泻湖岸边则减小到几厘米。根据历史风暴模拟的入海口沿岸 IG 波的空间变化和幅度与经典冬季观测到的相当,并不随离岸波浪能量的增加而线性增加。然而,观测和模拟结果都显示,在入海口内侧,特别是在避风沿岸,IG 波有局部放大现象,IG 波在自由表面高程的变化中占主导地位,在普通风暴期间达到约 0.6-0.7 米,在极端风暴情况下超过 1 米。数值实验表明,在位于避风海岸的一个热点,从一个海岸到另一个海岸的中导波反射造成的中导波高度占实测中导波高度的 35-40%。最后,据估计,在普通风暴情况下,IG 波对入海口两侧海岸 TWL 的贡献约为 0.4-0.6 米,在极端情况下约为 0.6-0.9 米,局部峰值分别为 0.74 米和 1.1 米,超过了波浪诱导设置的贡献。这项研究为了解中导波对 TWL 的贡献及其对大型入海口的倾覆洪水危害和冲刷过程的影响提供了新的视角,突出了在预警系统中考虑中导波的必要性,或为这些环境中的防洪计划绘制危害图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observation and modelling of infragravity waves at a large meso-tidal inlet and lagoon

The role of infragravity waves (IG waves) in beach and dune erosion or in flood hazard has been extensively studied on open beaches. In contrast, the detailed characterization of IG waves and their contribution to the Total Water Level (TWL) along the shore of inlets received little attention so far. In such environment, there is a real lack of in situ observations of waves and hydrodynamics conditions at appropriate spatial and temporal coverage to study the role of infragravity (IG) waves (long waves of frequency typically ranging between 0.004 Hz and 0.04–0.05 Hz) on coastal hazards. This contribution is based on field observations collected at the Arcachon Lagoon, a shallow semi-enclosed lagoon connected to the ocean by a large tidal inlet, located in southwest France. Analyses combine observations made at several locations during storm events within the inlet and the lagoon with numerical simulation with the XBeach surfbeat model to explore the spatial variability of IG waves and simulate observed, historical, and idealized storm conditions. The results show that IG waves are substantial during typical winter storms at the inlet and range from Hm0 = 0.8 to over 1 m across the ebb delta and about 0.4–0.6 m in the inner part of the inlet. At the lagoon entrance, IG waves remain substantial (about 0.1–0.2 m) and decrease to a few centimeters at the lagoon shore. The spatial variability and magnitude of IG waves along the inlet coast, simulated for the historical storms, are quite comparable to those observed during classical winter, and do not increase linearly with offshore wave energy. However, both observations and simulations reveal local amplifications of IG waves in the inner part of the inlet, especially along the sheltered coast were IG waves dominate the variance of free surface elevation, reaching about 0.6–0.7 m during common storms and more than 1 m for an extreme storm scenario. A numerical experiment indicates that IG wave reflection from one coast to the other contributes up to 35–40% of the measured IG wave height at a hot spot located along the sheltered coast. Finally, the contribution of IG waves to TWL at the shore on both sides of the inlet has been estimated to be about 0.4–0.6 m for a common storm and 0.6–0.9 m for an extreme scenario, locally peaking at 0.74 and 1.1 m respectively and overpassing the contribution of wave-induced setup. This work provides new insights into the contribution of IG waves to TWL and its implications for overtopping flooding hazard and overwash processes at large inlets, highlighting the need to consider IG waves in Early Warning Systems or hazard mapping for flood prevention plans in these environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信