{"title":"利用 FeCo2S4 纳米线作为无铂对电极提高染料敏化太阳能电池的效率和稳定性","authors":"","doi":"10.1016/j.jphotochem.2024.115908","DOIUrl":null,"url":null,"abstract":"<div><p>Replacing traditional Pt-based counter electrodes with low-cost and highly stable materials is crucial for the development of commercially viable dye-sensitized solar cells (DSSCs). In this study, we synthesized a ternary Pt-free FeCo<sub>2</sub>S<sub>4</sub> nanowire (NW)-based sulfide electrocatalyst by a three-step solvothermal method. This material was then used as a counter electrode in DSSCs to facilitate the reduction of triiodide species. The formation of FeCo<sub>2</sub>S<sub>4</sub> NW was confirmed by various characterization techniques such as X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy analysis revealed the structure of the nanowires. Electrochemical studies, which included cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization methods, revealed the excellent stability, superior electrocatalytic activity and remarkable kinetics of FeCo<sub>2</sub>S<sub>4</sub> NW in the reduction of triiodide to iodide. Photovoltaic measurements of the fabricated DSSCs yielded a power conversion efficiency (PCE) of 7.88 % for the FeCo<sub>2</sub>S<sub>4</sub>-based devices, outperforming the control device made of Pt (PCE=7.45 %). This improvement was primarily due to the increase in short-circuit current density (J<sub>SC</sub>), thanks to the lower charge transfer resistance (R<sub>CT</sub>) of FeCo<sub>2</sub>S<sub>4</sub> NW (J<sub>SC</sub>=15.23 mA/cm<sup>2</sup>; R<sub>CT</sub>=5.54 Ω cm<sup>2</sup>) compared to Pt (J<sub>SC</sub>=14.12 mA/cm<sup>2</sup>; R<sub>CT</sub>=7.07 Ω cm<sup>2</sup>). In addition, the FeCo<sub>2</sub>S<sub>4</sub> NW-based solar cells exhibited excellent stability and maintained their high PCE value even after 10 days of aging under ambient conditions, while Pt-based DSSCs showed a 3 % decrease from their initial PCE value. This FeCo<sub>2</sub>S<sub>4</sub> NW counter electrode proves to be an excellent alternative to Pt, and the presented results provide valuable insights for the development of cost-effective and highly stable DSSCs.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced efficiency and stability of dye-sensitized solar cells utilizing FeCo2S4 nanowires as Pt-free counter electrodes\",\"authors\":\"\",\"doi\":\"10.1016/j.jphotochem.2024.115908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Replacing traditional Pt-based counter electrodes with low-cost and highly stable materials is crucial for the development of commercially viable dye-sensitized solar cells (DSSCs). In this study, we synthesized a ternary Pt-free FeCo<sub>2</sub>S<sub>4</sub> nanowire (NW)-based sulfide electrocatalyst by a three-step solvothermal method. This material was then used as a counter electrode in DSSCs to facilitate the reduction of triiodide species. The formation of FeCo<sub>2</sub>S<sub>4</sub> NW was confirmed by various characterization techniques such as X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy analysis revealed the structure of the nanowires. Electrochemical studies, which included cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization methods, revealed the excellent stability, superior electrocatalytic activity and remarkable kinetics of FeCo<sub>2</sub>S<sub>4</sub> NW in the reduction of triiodide to iodide. Photovoltaic measurements of the fabricated DSSCs yielded a power conversion efficiency (PCE) of 7.88 % for the FeCo<sub>2</sub>S<sub>4</sub>-based devices, outperforming the control device made of Pt (PCE=7.45 %). This improvement was primarily due to the increase in short-circuit current density (J<sub>SC</sub>), thanks to the lower charge transfer resistance (R<sub>CT</sub>) of FeCo<sub>2</sub>S<sub>4</sub> NW (J<sub>SC</sub>=15.23 mA/cm<sup>2</sup>; R<sub>CT</sub>=5.54 Ω cm<sup>2</sup>) compared to Pt (J<sub>SC</sub>=14.12 mA/cm<sup>2</sup>; R<sub>CT</sub>=7.07 Ω cm<sup>2</sup>). In addition, the FeCo<sub>2</sub>S<sub>4</sub> NW-based solar cells exhibited excellent stability and maintained their high PCE value even after 10 days of aging under ambient conditions, while Pt-based DSSCs showed a 3 % decrease from their initial PCE value. This FeCo<sub>2</sub>S<sub>4</sub> NW counter electrode proves to be an excellent alternative to Pt, and the presented results provide valuable insights for the development of cost-effective and highly stable DSSCs.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024004520\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024004520","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhanced efficiency and stability of dye-sensitized solar cells utilizing FeCo2S4 nanowires as Pt-free counter electrodes
Replacing traditional Pt-based counter electrodes with low-cost and highly stable materials is crucial for the development of commercially viable dye-sensitized solar cells (DSSCs). In this study, we synthesized a ternary Pt-free FeCo2S4 nanowire (NW)-based sulfide electrocatalyst by a three-step solvothermal method. This material was then used as a counter electrode in DSSCs to facilitate the reduction of triiodide species. The formation of FeCo2S4 NW was confirmed by various characterization techniques such as X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy analysis revealed the structure of the nanowires. Electrochemical studies, which included cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization methods, revealed the excellent stability, superior electrocatalytic activity and remarkable kinetics of FeCo2S4 NW in the reduction of triiodide to iodide. Photovoltaic measurements of the fabricated DSSCs yielded a power conversion efficiency (PCE) of 7.88 % for the FeCo2S4-based devices, outperforming the control device made of Pt (PCE=7.45 %). This improvement was primarily due to the increase in short-circuit current density (JSC), thanks to the lower charge transfer resistance (RCT) of FeCo2S4 NW (JSC=15.23 mA/cm2; RCT=5.54 Ω cm2) compared to Pt (JSC=14.12 mA/cm2; RCT=7.07 Ω cm2). In addition, the FeCo2S4 NW-based solar cells exhibited excellent stability and maintained their high PCE value even after 10 days of aging under ambient conditions, while Pt-based DSSCs showed a 3 % decrease from their initial PCE value. This FeCo2S4 NW counter electrode proves to be an excellent alternative to Pt, and the presented results provide valuable insights for the development of cost-effective and highly stable DSSCs.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.