参数不确定方法下的分数阶稳健控制设计

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Marcus C. Martins-Gomes , Florindo A. de C. Ayres Junior , Carlos T. da Costa Junior , Iury V. de Bessa , Nei Junior da S. Farias , Renan L.P. de Medeiros , Luiz E.S. Silva , Vicente F. de Lucena Júnior
{"title":"参数不确定方法下的分数阶稳健控制设计","authors":"Marcus C. Martins-Gomes ,&nbsp;Florindo A. de C. Ayres Junior ,&nbsp;Carlos T. da Costa Junior ,&nbsp;Iury V. de Bessa ,&nbsp;Nei Junior da S. Farias ,&nbsp;Renan L.P. de Medeiros ,&nbsp;Luiz E.S. Silva ,&nbsp;Vicente F. de Lucena Júnior","doi":"10.1016/j.isatra.2024.07.023","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel methodology that combines fractional-order control theory with robust control under a parametric uncertainty approach to enhance the performance of linear time-invariant uncertain systems with integer or fractional order, referred to as Fractional-Order Robust Control (FORC). In contrast to traditional approaches, the proposed methodology introduces a novel formulation of inequalities-based design, thus expanding the potential for discovering improved solutions through linear programming optimization. As a result, fractional order controllers are designed to guarantee desired transient and steady-state performance in a closed-loop system. To enable the digital implementation of the designed controller, an impulse response invariant discretization of fractional-order differentiators (IRID-FOD) is employed to approximate the fractional-order controllers to an integer-order transfer function. Additionally, Hankel’s reduction order method is applied, thus making it suitable for hardware deployment. Experimental tests carried out in a thermal system and the assessment results, based on time-domain responses and robustness analysis supported by performance indices and set value analysis in a thermal system test-bed, demonstrate the improved and robust performance of the proposed FORC methodology compared to classical robust control under parametric uncertainty.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"153 ","pages":"Pages 420-432"},"PeriodicalIF":6.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional-Order Robust Control Design under parametric uncertain approach\",\"authors\":\"Marcus C. Martins-Gomes ,&nbsp;Florindo A. de C. Ayres Junior ,&nbsp;Carlos T. da Costa Junior ,&nbsp;Iury V. de Bessa ,&nbsp;Nei Junior da S. Farias ,&nbsp;Renan L.P. de Medeiros ,&nbsp;Luiz E.S. Silva ,&nbsp;Vicente F. de Lucena Júnior\",\"doi\":\"10.1016/j.isatra.2024.07.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel methodology that combines fractional-order control theory with robust control under a parametric uncertainty approach to enhance the performance of linear time-invariant uncertain systems with integer or fractional order, referred to as Fractional-Order Robust Control (FORC). In contrast to traditional approaches, the proposed methodology introduces a novel formulation of inequalities-based design, thus expanding the potential for discovering improved solutions through linear programming optimization. As a result, fractional order controllers are designed to guarantee desired transient and steady-state performance in a closed-loop system. To enable the digital implementation of the designed controller, an impulse response invariant discretization of fractional-order differentiators (IRID-FOD) is employed to approximate the fractional-order controllers to an integer-order transfer function. Additionally, Hankel’s reduction order method is applied, thus making it suitable for hardware deployment. Experimental tests carried out in a thermal system and the assessment results, based on time-domain responses and robustness analysis supported by performance indices and set value analysis in a thermal system test-bed, demonstrate the improved and robust performance of the proposed FORC methodology compared to classical robust control under parametric uncertainty.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"153 \",\"pages\":\"Pages 420-432\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824003562\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003562","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新方法,将分数阶控制理论与参数不确定性方法下的鲁棒控制相结合,以提高具有整数阶或分数阶的线性时不变不确定系统的性能,称为分数阶鲁棒控制(Fractional-Order Robust Control,FORC)。与传统方法不同的是,所提出的方法引入了基于不等式设计的新表述,从而扩大了通过线性编程优化发现改进解决方案的潜力。因此,设计出的分数阶控制器能保证闭环系统中理想的瞬态和稳态性能。为实现所设计控制器的数字实现,采用了分数阶微分器的脉冲响应不变离散化(IRID-FOD),将分数阶控制器近似为整数阶传递函数。此外,还应用了汉克尔降阶法,从而使其适合硬件部署。在热力系统中进行的实验测试和评估结果(基于时域响应和鲁棒性分析,并辅以热力系统测试平台中的性能指标和设定值分析)表明,与参数不确定性条件下的经典鲁棒控制相比,所提出的 FORC 方法具有更好的鲁棒性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional-Order Robust Control Design under parametric uncertain approach

This paper presents a novel methodology that combines fractional-order control theory with robust control under a parametric uncertainty approach to enhance the performance of linear time-invariant uncertain systems with integer or fractional order, referred to as Fractional-Order Robust Control (FORC). In contrast to traditional approaches, the proposed methodology introduces a novel formulation of inequalities-based design, thus expanding the potential for discovering improved solutions through linear programming optimization. As a result, fractional order controllers are designed to guarantee desired transient and steady-state performance in a closed-loop system. To enable the digital implementation of the designed controller, an impulse response invariant discretization of fractional-order differentiators (IRID-FOD) is employed to approximate the fractional-order controllers to an integer-order transfer function. Additionally, Hankel’s reduction order method is applied, thus making it suitable for hardware deployment. Experimental tests carried out in a thermal system and the assessment results, based on time-domain responses and robustness analysis supported by performance indices and set value analysis in a thermal system test-bed, demonstrate the improved and robust performance of the proposed FORC methodology compared to classical robust control under parametric uncertainty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信