{"title":"利用图神经网络增强对比学习,实现通用多变量时间序列表征","authors":"Xinghao Wang, Qiang Xing, Huimin Xiao, Ming Ye","doi":"10.1016/j.is.2024.102429","DOIUrl":null,"url":null,"abstract":"<div><p>Analyzing multivariate time series data is crucial for many real-world issues, such as power forecasting, traffic flow forecasting, industrial anomaly detection, and more. Recently, universal frameworks for time series representation based on representation learning have received widespread attention due to their ability to capture changes in the distribution of time series data. However, existing time series representation learning models, when confronting multivariate time series data, merely apply contrastive learning methods to construct positive and negative samples for each variable at the timestamp level, and then employ a contrastive loss function to encourage the model to learn the similarities among the positive samples and the dissimilarities among the negative samples for each variable. Despite this, they fail to fully exploit the latent space dependencies between pairs of variables. To address this problem, we propose the Contrastive Learning Enhanced by Graph Neural Networks for Universal Multivariate Time Series Representation (COGNet), which has three distinctive features. (1) COGNet is a comprehensive self-supervised learning model that combines autoencoders and contrastive learning methods. (2) We introduce graph feature representation blocks on top of the backbone encoder, which extract adjacency features of each variable with other variables. (3) COGNet uses graph contrastive loss to learn graph feature representations. Experimental results across multiple public datasets indicate that COGNet outperforms existing methods in time series prediction and anomaly detection tasks.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"125 ","pages":"Article 102429"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrastive learning enhanced by graph neural networks for Universal Multivariate Time Series Representation\",\"authors\":\"Xinghao Wang, Qiang Xing, Huimin Xiao, Ming Ye\",\"doi\":\"10.1016/j.is.2024.102429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Analyzing multivariate time series data is crucial for many real-world issues, such as power forecasting, traffic flow forecasting, industrial anomaly detection, and more. Recently, universal frameworks for time series representation based on representation learning have received widespread attention due to their ability to capture changes in the distribution of time series data. However, existing time series representation learning models, when confronting multivariate time series data, merely apply contrastive learning methods to construct positive and negative samples for each variable at the timestamp level, and then employ a contrastive loss function to encourage the model to learn the similarities among the positive samples and the dissimilarities among the negative samples for each variable. Despite this, they fail to fully exploit the latent space dependencies between pairs of variables. To address this problem, we propose the Contrastive Learning Enhanced by Graph Neural Networks for Universal Multivariate Time Series Representation (COGNet), which has three distinctive features. (1) COGNet is a comprehensive self-supervised learning model that combines autoencoders and contrastive learning methods. (2) We introduce graph feature representation blocks on top of the backbone encoder, which extract adjacency features of each variable with other variables. (3) COGNet uses graph contrastive loss to learn graph feature representations. Experimental results across multiple public datasets indicate that COGNet outperforms existing methods in time series prediction and anomaly detection tasks.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"125 \",\"pages\":\"Article 102429\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000875\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000875","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Contrastive learning enhanced by graph neural networks for Universal Multivariate Time Series Representation
Analyzing multivariate time series data is crucial for many real-world issues, such as power forecasting, traffic flow forecasting, industrial anomaly detection, and more. Recently, universal frameworks for time series representation based on representation learning have received widespread attention due to their ability to capture changes in the distribution of time series data. However, existing time series representation learning models, when confronting multivariate time series data, merely apply contrastive learning methods to construct positive and negative samples for each variable at the timestamp level, and then employ a contrastive loss function to encourage the model to learn the similarities among the positive samples and the dissimilarities among the negative samples for each variable. Despite this, they fail to fully exploit the latent space dependencies between pairs of variables. To address this problem, we propose the Contrastive Learning Enhanced by Graph Neural Networks for Universal Multivariate Time Series Representation (COGNet), which has three distinctive features. (1) COGNet is a comprehensive self-supervised learning model that combines autoencoders and contrastive learning methods. (2) We introduce graph feature representation blocks on top of the backbone encoder, which extract adjacency features of each variable with other variables. (3) COGNet uses graph contrastive loss to learn graph feature representations. Experimental results across multiple public datasets indicate that COGNet outperforms existing methods in time series prediction and anomaly detection tasks.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.