Santiago García-Gil, Juan Manuel Murillo, Jaime Galán-Jiménez
{"title":"利用无人机群实现农村地区超可靠低延迟通信","authors":"Santiago García-Gil, Juan Manuel Murillo, Jaime Galán-Jiménez","doi":"10.1016/j.adhoc.2024.103603","DOIUrl":null,"url":null,"abstract":"<div><p>Latency is a critical aspect for a broad spectrum of applications that relies on the internet, such as, voice over IP (VoIP) or teleconferencing, and the lack of ultra-fast and highly reliable communications is prominent in rural areas even in mature economies. Our proposal focuses on optimizing the deployment of microservice-oriented architectures (MSA) in computing and routing enabled unmanned aerial vehicles (UAVs). For that matter, an information system which gathers all the information of the flying ad hoc network (FANET) is developed. From there, we propose multiple approaches, based on integer linear programming (ILP) and heuristics, to tackle the minimization of end-to-end latency by deploying multiple instances of microservices in the UAVs that are close to the users that make use of them. Extensive experiments based on network emulation prove the performance of our ILP formulation of the problem and address the optimality gap between the ILP-based approach and the heuristics ones, which are highly scalable and usable in real-time for large-scale scenarios.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570870524002142/pdfft?md5=954d5bdc1eb5189baec918aa54fbcb74&pid=1-s2.0-S1570870524002142-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enabling Ultra Reliable Low Latency Communications in rural areas using UAV swarms\",\"authors\":\"Santiago García-Gil, Juan Manuel Murillo, Jaime Galán-Jiménez\",\"doi\":\"10.1016/j.adhoc.2024.103603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Latency is a critical aspect for a broad spectrum of applications that relies on the internet, such as, voice over IP (VoIP) or teleconferencing, and the lack of ultra-fast and highly reliable communications is prominent in rural areas even in mature economies. Our proposal focuses on optimizing the deployment of microservice-oriented architectures (MSA) in computing and routing enabled unmanned aerial vehicles (UAVs). For that matter, an information system which gathers all the information of the flying ad hoc network (FANET) is developed. From there, we propose multiple approaches, based on integer linear programming (ILP) and heuristics, to tackle the minimization of end-to-end latency by deploying multiple instances of microservices in the UAVs that are close to the users that make use of them. Extensive experiments based on network emulation prove the performance of our ILP formulation of the problem and address the optimality gap between the ILP-based approach and the heuristics ones, which are highly scalable and usable in real-time for large-scale scenarios.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002142/pdfft?md5=954d5bdc1eb5189baec918aa54fbcb74&pid=1-s2.0-S1570870524002142-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002142\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002142","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
对于依赖互联网的各种应用(如 IP 语音(VoIP)或电话会议)来说,延迟是一个至关重要的方面,即使在成熟经济体的农村地区,缺乏超高速和高可靠性通信的问题也很突出。我们的建议侧重于优化微服务导向架构(MSA)在支持计算和路由的无人驾驶飞行器(UAV)中的部署。为此,我们开发了一个信息系统,用于收集飞行临时网络(FANET)的所有信息。在此基础上,我们提出了基于整数线性规划(ILP)和启发式的多种方法,通过在无人飞行器中部署多个微服务实例来最大限度地减少端到端延迟,因为无人飞行器离使用它们的用户很近。基于网络模拟的大量实验证明了我们对问题的 ILP 表述的性能,并解决了基于 ILP 的方法与启发式方法之间的优化差距,这种方法具有高度可扩展性,可实时用于大规模场景。
Enabling Ultra Reliable Low Latency Communications in rural areas using UAV swarms
Latency is a critical aspect for a broad spectrum of applications that relies on the internet, such as, voice over IP (VoIP) or teleconferencing, and the lack of ultra-fast and highly reliable communications is prominent in rural areas even in mature economies. Our proposal focuses on optimizing the deployment of microservice-oriented architectures (MSA) in computing and routing enabled unmanned aerial vehicles (UAVs). For that matter, an information system which gathers all the information of the flying ad hoc network (FANET) is developed. From there, we propose multiple approaches, based on integer linear programming (ILP) and heuristics, to tackle the minimization of end-to-end latency by deploying multiple instances of microservices in the UAVs that are close to the users that make use of them. Extensive experiments based on network emulation prove the performance of our ILP formulation of the problem and address the optimality gap between the ILP-based approach and the heuristics ones, which are highly scalable and usable in real-time for large-scale scenarios.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.