{"title":"关于超高真空表面化学的过去、现在和未来以及单原子合金诞生的思考","authors":"Audrey Dannar, E. Charles H. Sykes","doi":"10.1016/j.susc.2024.122566","DOIUrl":null,"url":null,"abstract":"<div><p>Throughout its relatively short lifetime, ultra-high vacuum (UHV) surface chemistry has progressed quickly. In the 1960′s, pioneers like Ertl and Somorjai started the field using single crystals and gained significant insight into catalytic processes by relating surface structure to reactivity. The more recent proliferation of scanning probes has significantly increased the power of the single crystal approach by enabling the atomic-scale structure of active sites to be correlated with their reactivity. In this perspective we briefly discuss how the field developed, identify some challenges, and highlight <em>Single-Atom Alloys</em> (SAAs), a new class of heterogeneous catalyst that was developed from a fundamental surface science approach. However, despite recent successes, funding for fundamental surface science has declined. Academic hires in the discipline are also declining in part due to the start-up costs. We make the case that fundamental UHV surface chemistry is still too young a field to be in recession.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"749 ","pages":"Article 122566"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thoughts on the past, present and future of UHV surface chemistry and the birth of Single-Atom Alloys\",\"authors\":\"Audrey Dannar, E. Charles H. Sykes\",\"doi\":\"10.1016/j.susc.2024.122566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Throughout its relatively short lifetime, ultra-high vacuum (UHV) surface chemistry has progressed quickly. In the 1960′s, pioneers like Ertl and Somorjai started the field using single crystals and gained significant insight into catalytic processes by relating surface structure to reactivity. The more recent proliferation of scanning probes has significantly increased the power of the single crystal approach by enabling the atomic-scale structure of active sites to be correlated with their reactivity. In this perspective we briefly discuss how the field developed, identify some challenges, and highlight <em>Single-Atom Alloys</em> (SAAs), a new class of heterogeneous catalyst that was developed from a fundamental surface science approach. However, despite recent successes, funding for fundamental surface science has declined. Academic hires in the discipline are also declining in part due to the start-up costs. We make the case that fundamental UHV surface chemistry is still too young a field to be in recession.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"749 \",\"pages\":\"Article 122566\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001171\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001171","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Thoughts on the past, present and future of UHV surface chemistry and the birth of Single-Atom Alloys
Throughout its relatively short lifetime, ultra-high vacuum (UHV) surface chemistry has progressed quickly. In the 1960′s, pioneers like Ertl and Somorjai started the field using single crystals and gained significant insight into catalytic processes by relating surface structure to reactivity. The more recent proliferation of scanning probes has significantly increased the power of the single crystal approach by enabling the atomic-scale structure of active sites to be correlated with their reactivity. In this perspective we briefly discuss how the field developed, identify some challenges, and highlight Single-Atom Alloys (SAAs), a new class of heterogeneous catalyst that was developed from a fundamental surface science approach. However, despite recent successes, funding for fundamental surface science has declined. Academic hires in the discipline are also declining in part due to the start-up costs. We make the case that fundamental UHV surface chemistry is still too young a field to be in recession.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.