{"title":"群岛效应导致涡旋分裂的理论解法","authors":"Xiongbo Zheng , Mingze Ji , Jingyi Lu , Xiaole Li","doi":"10.1016/j.ocemod.2024.102418","DOIUrl":null,"url":null,"abstract":"<div><p>Islands, acting as transitional areas between land and sea, significantly influence their surrounding environments. Studying the changes in vortex structure resulting from the interaction between islands and mesoscale vortices is crucial for understanding the dynamic characteristics and ecological processes of the marine environment. Previous theoretical studies have shown that in a domain without boundaries, due to the conservation of angular momentum, a vortex cannot split by itself. This paper establishes the conditions for the splitting of an anticyclonic vortex when it collides with two square islands. By linking the initial and final states of islands effect on the vortex and utilizing conserved quantities such as angular momentum and mass, along with the slow variation approximation, a nonlinear theoretical solution is constructed. The analysis shows that when the interaction between the vortex and the two islands leads to vortex splitting, the length of the islands, the vortex radius, and the distance between the islands must satisfy a certain condition <span><math><mrow><mi>O</mi><mo>(</mo><mfrac><mi>L</mi><mi>R</mi></mfrac><mo>)</mo></mrow></math></span>∼<span><math><mrow><mi>O</mi><mo>(</mo><mfrac><mi>w</mi><mi>R</mi></mfrac><mo>)</mo></mrow></math></span>∼<span><math><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span>. These results provide support for subsequent analyses of the impact of various parameters on vortex structure when the North Brazil Current (NBC) ring encounters the Lesser Antilles in the tropical western Atlantic.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"191 ","pages":"Article 102418"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical solution of vortex splitting due to islands effect on the vortex\",\"authors\":\"Xiongbo Zheng , Mingze Ji , Jingyi Lu , Xiaole Li\",\"doi\":\"10.1016/j.ocemod.2024.102418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Islands, acting as transitional areas between land and sea, significantly influence their surrounding environments. Studying the changes in vortex structure resulting from the interaction between islands and mesoscale vortices is crucial for understanding the dynamic characteristics and ecological processes of the marine environment. Previous theoretical studies have shown that in a domain without boundaries, due to the conservation of angular momentum, a vortex cannot split by itself. This paper establishes the conditions for the splitting of an anticyclonic vortex when it collides with two square islands. By linking the initial and final states of islands effect on the vortex and utilizing conserved quantities such as angular momentum and mass, along with the slow variation approximation, a nonlinear theoretical solution is constructed. The analysis shows that when the interaction between the vortex and the two islands leads to vortex splitting, the length of the islands, the vortex radius, and the distance between the islands must satisfy a certain condition <span><math><mrow><mi>O</mi><mo>(</mo><mfrac><mi>L</mi><mi>R</mi></mfrac><mo>)</mo></mrow></math></span>∼<span><math><mrow><mi>O</mi><mo>(</mo><mfrac><mi>w</mi><mi>R</mi></mfrac><mo>)</mo></mrow></math></span>∼<span><math><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span>. These results provide support for subsequent analyses of the impact of various parameters on vortex structure when the North Brazil Current (NBC) ring encounters the Lesser Antilles in the tropical western Atlantic.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"191 \",\"pages\":\"Article 102418\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324001057\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001057","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Theoretical solution of vortex splitting due to islands effect on the vortex
Islands, acting as transitional areas between land and sea, significantly influence their surrounding environments. Studying the changes in vortex structure resulting from the interaction between islands and mesoscale vortices is crucial for understanding the dynamic characteristics and ecological processes of the marine environment. Previous theoretical studies have shown that in a domain without boundaries, due to the conservation of angular momentum, a vortex cannot split by itself. This paper establishes the conditions for the splitting of an anticyclonic vortex when it collides with two square islands. By linking the initial and final states of islands effect on the vortex and utilizing conserved quantities such as angular momentum and mass, along with the slow variation approximation, a nonlinear theoretical solution is constructed. The analysis shows that when the interaction between the vortex and the two islands leads to vortex splitting, the length of the islands, the vortex radius, and the distance between the islands must satisfy a certain condition ∼∼. These results provide support for subsequent analyses of the impact of various parameters on vortex structure when the North Brazil Current (NBC) ring encounters the Lesser Antilles in the tropical western Atlantic.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.