增强二维和三维系统异质结中的内置电场,加速光生载流子的分离和转移,实现高效光催化

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Song Li , Yanhong Lyu , Jianyun Zheng , Zdenek Sofer , Huaijuan Zhou
{"title":"增强二维和三维系统异质结中的内置电场,加速光生载流子的分离和转移,实现高效光催化","authors":"Song Li ,&nbsp;Yanhong Lyu ,&nbsp;Jianyun Zheng ,&nbsp;Zdenek Sofer ,&nbsp;Huaijuan Zhou","doi":"10.1016/j.flatc.2024.100718","DOIUrl":null,"url":null,"abstract":"<div><p>Inhibiting the rapid recombination of photogenerated carriers has been a serious challenge to improve photocatalytic efficiency. Constructing and boosting the built-in electric field in photocatalysts of 2D and 3D systems can effectively promote the separation and transfer of photogenerated charge carriers. Herein, we systematically summarize the construction principle, characterization methods about the direction and intensity of the built-in electric field, and several strategies to boost the built-in electric field including structure optimization, phase modulation, vacancy defects engineering, doping strategies, construction of charge transfer mediators. It is worth noting that the uneven charge distribution in the material (or differences in the position of the Fermi level) is a key issue in the construction and enhancement of built-in electric field. Finally, the application of the built-in electric field in photocatalytic water splitting, carbon dioxide reduction, nitrogen fixation and pollutant degradation are described. This review highlights a comprehensive understanding of the mechanism of built-in electric field in photocatalysis and offers some insights into the design and modification of photocatalysts for different applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100718"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis\",\"authors\":\"Song Li ,&nbsp;Yanhong Lyu ,&nbsp;Jianyun Zheng ,&nbsp;Zdenek Sofer ,&nbsp;Huaijuan Zhou\",\"doi\":\"10.1016/j.flatc.2024.100718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inhibiting the rapid recombination of photogenerated carriers has been a serious challenge to improve photocatalytic efficiency. Constructing and boosting the built-in electric field in photocatalysts of 2D and 3D systems can effectively promote the separation and transfer of photogenerated charge carriers. Herein, we systematically summarize the construction principle, characterization methods about the direction and intensity of the built-in electric field, and several strategies to boost the built-in electric field including structure optimization, phase modulation, vacancy defects engineering, doping strategies, construction of charge transfer mediators. It is worth noting that the uneven charge distribution in the material (or differences in the position of the Fermi level) is a key issue in the construction and enhancement of built-in electric field. Finally, the application of the built-in electric field in photocatalytic water splitting, carbon dioxide reduction, nitrogen fixation and pollutant degradation are described. This review highlights a comprehensive understanding of the mechanism of built-in electric field in photocatalysis and offers some insights into the design and modification of photocatalysts for different applications.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"47 \",\"pages\":\"Article 100718\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001120\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001120","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

抑制光生载流子的快速重组一直是提高光催化效率的严峻挑战。在二维和三维体系的光催化剂中构建和增强内置电场可以有效促进光生电荷载流子的分离和转移。在此,我们系统地总结了内置电场的构建原理、方向和强度的表征方法,以及增强内置电场的几种策略,包括结构优化、相位调制、空位缺陷工程、掺杂策略、电荷转移介质的构建等。值得注意的是,材料中电荷分布的不均匀性(或费米级位置的差异)是构建和增强内置电场的关键问题。最后,介绍了内置电场在光催化水分离、二氧化碳还原、固氮和污染物降解中的应用。这篇综述强调了对光催化内置电场机理的全面理解,并为设计和改性光催化剂的不同应用提供了一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis

Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis

Inhibiting the rapid recombination of photogenerated carriers has been a serious challenge to improve photocatalytic efficiency. Constructing and boosting the built-in electric field in photocatalysts of 2D and 3D systems can effectively promote the separation and transfer of photogenerated charge carriers. Herein, we systematically summarize the construction principle, characterization methods about the direction and intensity of the built-in electric field, and several strategies to boost the built-in electric field including structure optimization, phase modulation, vacancy defects engineering, doping strategies, construction of charge transfer mediators. It is worth noting that the uneven charge distribution in the material (or differences in the position of the Fermi level) is a key issue in the construction and enhancement of built-in electric field. Finally, the application of the built-in electric field in photocatalytic water splitting, carbon dioxide reduction, nitrogen fixation and pollutant degradation are described. This review highlights a comprehensive understanding of the mechanism of built-in electric field in photocatalysis and offers some insights into the design and modification of photocatalysts for different applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信