P. R. Fagundes, V. G. Pillat, A. Tardelli, M. T. A. H. Muella
{"title":"低太阳活动期间太阳耀斑造成的极对极电离层扰动","authors":"P. R. Fagundes, V. G. Pillat, A. Tardelli, M. T. A. H. Muella","doi":"10.1029/2024JA032597","DOIUrl":null,"url":null,"abstract":"<p>There are growing concerns about the effect of solar flares on the ionosphere, mainly due to possible deterioration or damage to our communication and navigation satellite systems. On 3 July 2021, and 28 October 2021, there were solar flares (SFs) classified as X1.59 and X1.0, respectively. These two SFs were the only ones of X-class that occurred during the last low solar activity (LSA:2018–2021). Data from magnetometers and Global Positioning System (GPS)—Total Electron Content (TEC) are used to investigate the spatial-temporal electrodynamics of the ionosphere from pole-to-pole in the American sector. Employing ∆<i>H</i> and vertical TEC, along with the ROT (rate of change of VTEC) parameter. Rapidly ∆<i>H</i> disturbances closely follow the X-ray variation and the ∆<i>H</i> valleys and peaks are well-synchronized during the SFs, indicating that they are linked. Major disturbances in the ∆<i>H</i> are noticed in the mid-low-equatorial latitudes. However, minor disturbances were seen at high latitudes. Also, |ROT| is a good indicator of the electron density changes during the SFs, especially when the X-ray intensity rises to the peak.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pole-To-Pole Ionospheric Disturbances Due To Solar Flares, During Low Solar Activity\",\"authors\":\"P. R. Fagundes, V. G. Pillat, A. Tardelli, M. T. A. H. Muella\",\"doi\":\"10.1029/2024JA032597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are growing concerns about the effect of solar flares on the ionosphere, mainly due to possible deterioration or damage to our communication and navigation satellite systems. On 3 July 2021, and 28 October 2021, there were solar flares (SFs) classified as X1.59 and X1.0, respectively. These two SFs were the only ones of X-class that occurred during the last low solar activity (LSA:2018–2021). Data from magnetometers and Global Positioning System (GPS)—Total Electron Content (TEC) are used to investigate the spatial-temporal electrodynamics of the ionosphere from pole-to-pole in the American sector. Employing ∆<i>H</i> and vertical TEC, along with the ROT (rate of change of VTEC) parameter. Rapidly ∆<i>H</i> disturbances closely follow the X-ray variation and the ∆<i>H</i> valleys and peaks are well-synchronized during the SFs, indicating that they are linked. Major disturbances in the ∆<i>H</i> are noticed in the mid-low-equatorial latitudes. However, minor disturbances were seen at high latitudes. Also, |ROT| is a good indicator of the electron density changes during the SFs, especially when the X-ray intensity rises to the peak.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032597\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032597","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Pole-To-Pole Ionospheric Disturbances Due To Solar Flares, During Low Solar Activity
There are growing concerns about the effect of solar flares on the ionosphere, mainly due to possible deterioration or damage to our communication and navigation satellite systems. On 3 July 2021, and 28 October 2021, there were solar flares (SFs) classified as X1.59 and X1.0, respectively. These two SFs were the only ones of X-class that occurred during the last low solar activity (LSA:2018–2021). Data from magnetometers and Global Positioning System (GPS)—Total Electron Content (TEC) are used to investigate the spatial-temporal electrodynamics of the ionosphere from pole-to-pole in the American sector. Employing ∆H and vertical TEC, along with the ROT (rate of change of VTEC) parameter. Rapidly ∆H disturbances closely follow the X-ray variation and the ∆H valleys and peaks are well-synchronized during the SFs, indicating that they are linked. Major disturbances in the ∆H are noticed in the mid-low-equatorial latitudes. However, minor disturbances were seen at high latitudes. Also, |ROT| is a good indicator of the electron density changes during the SFs, especially when the X-ray intensity rises to the peak.