Ibrahim F. Waheed , Maha M. Awsaj , Omar S. Dahham , Mustafa Qutaiba Jabbar , Faiz M. Al‑Abady , Mohammed Abbas Fadhil Al-Samarrai
{"title":"用于光催化降解有机染料的 CoMnFe2O4 中空微结构装饰 GO 的合成","authors":"Ibrahim F. Waheed , Maha M. Awsaj , Omar S. Dahham , Mustafa Qutaiba Jabbar , Faiz M. Al‑Abady , Mohammed Abbas Fadhil Al-Samarrai","doi":"10.1016/j.arabjc.2024.105934","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past decade, safeguarding marine life and aquatic ecosystems against deleterious dye pollutants has emerged as a paramount concern. Methylene blue dye stands out as one such pollutant capable of inflicting irreversible damage to marine ecosystems even at minute concentrations. Addressing this pressing issue, we synthesized a novel CoMnFe<sub>2</sub>O<sub>4</sub>/graphene oxide nanocomposite employing a microwave-ultrasonic method. This composite, comprising soft superparamagnetic CoMnFe<sub>2</sub>O<sub>4</sub> hollow microstructures integrated onto graphene oxide surfaces, revealed a mesoporous structure with a notably high surface area, which was about 96.4654 m<sup>2</sup>.g<sup>−1</sup>. Various analytical techniques were employed to scrutinize the crystal structure, functional groups, surface chemical composition, and morphologies of the synthesized CoMnFe<sub>2</sub>O<sub>4</sub>/graphene oxide nanocomposite (X-ray diffraction, Fourier-Transform Infrared Spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy). The CoMnFe<sub>2</sub>O<sub>4</sub> crystal phase appears to be cubic in the X-ray diffraction with a 28.91 nm Avg. crystallite size. The measured band gap energies for the CoMnFe<sub>2</sub>O<sub>4</sub>, graphene oxide, and CoMnFe<sub>2</sub>O<sub>4</sub>/graphene oxide nanocomposite are 2.23 eV, 2.90 eV, and 1.89 eV, respectively. Remarkably, under visible light irradiation, the nanocomposite exhibited an impressive degradation efficiency of 97.54 % within just fifty minutes (at pH = 7, Methylene blue conc. = 15 mg/L, and catalyst dose = 0.05 g.), attributed to a photo degradation rate constant (k value) reaching 0.07330 min<sup>−1</sup>. Notably, this efficiency nearly doubled with the introduction of H<sub>2</sub>O<sub>2</sub> peroxide. The outstanding recyclability of the CoMnFe<sub>2</sub>O<sub>4</sub>/graphene oxide nanocomposite, sustaining optimal performance over four cycles without significant degradation, underscores its potential for long-term environmental remediation efforts. Moreover, its magnetic extractability from contaminated solutions enhances its suitability for advanced environmental applications.</p></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"17 9","pages":"Article 105934"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878535224003368/pdfft?md5=e03cfa1b8eabca27b04a40192b9da321&pid=1-s2.0-S1878535224003368-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis of CoMnFe2O4 hollow microstructure decorated GO for photocatalytic degradation of organic dyes\",\"authors\":\"Ibrahim F. Waheed , Maha M. Awsaj , Omar S. Dahham , Mustafa Qutaiba Jabbar , Faiz M. Al‑Abady , Mohammed Abbas Fadhil Al-Samarrai\",\"doi\":\"10.1016/j.arabjc.2024.105934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past decade, safeguarding marine life and aquatic ecosystems against deleterious dye pollutants has emerged as a paramount concern. Methylene blue dye stands out as one such pollutant capable of inflicting irreversible damage to marine ecosystems even at minute concentrations. Addressing this pressing issue, we synthesized a novel CoMnFe<sub>2</sub>O<sub>4</sub>/graphene oxide nanocomposite employing a microwave-ultrasonic method. This composite, comprising soft superparamagnetic CoMnFe<sub>2</sub>O<sub>4</sub> hollow microstructures integrated onto graphene oxide surfaces, revealed a mesoporous structure with a notably high surface area, which was about 96.4654 m<sup>2</sup>.g<sup>−1</sup>. Various analytical techniques were employed to scrutinize the crystal structure, functional groups, surface chemical composition, and morphologies of the synthesized CoMnFe<sub>2</sub>O<sub>4</sub>/graphene oxide nanocomposite (X-ray diffraction, Fourier-Transform Infrared Spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy). The CoMnFe<sub>2</sub>O<sub>4</sub> crystal phase appears to be cubic in the X-ray diffraction with a 28.91 nm Avg. crystallite size. The measured band gap energies for the CoMnFe<sub>2</sub>O<sub>4</sub>, graphene oxide, and CoMnFe<sub>2</sub>O<sub>4</sub>/graphene oxide nanocomposite are 2.23 eV, 2.90 eV, and 1.89 eV, respectively. Remarkably, under visible light irradiation, the nanocomposite exhibited an impressive degradation efficiency of 97.54 % within just fifty minutes (at pH = 7, Methylene blue conc. = 15 mg/L, and catalyst dose = 0.05 g.), attributed to a photo degradation rate constant (k value) reaching 0.07330 min<sup>−1</sup>. Notably, this efficiency nearly doubled with the introduction of H<sub>2</sub>O<sub>2</sub> peroxide. The outstanding recyclability of the CoMnFe<sub>2</sub>O<sub>4</sub>/graphene oxide nanocomposite, sustaining optimal performance over four cycles without significant degradation, underscores its potential for long-term environmental remediation efforts. Moreover, its magnetic extractability from contaminated solutions enhances its suitability for advanced environmental applications.</p></div>\",\"PeriodicalId\":249,\"journal\":{\"name\":\"Arabian Journal of Chemistry\",\"volume\":\"17 9\",\"pages\":\"Article 105934\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878535224003368/pdfft?md5=e03cfa1b8eabca27b04a40192b9da321&pid=1-s2.0-S1878535224003368-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878535224003368\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878535224003368","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of CoMnFe2O4 hollow microstructure decorated GO for photocatalytic degradation of organic dyes
Over the past decade, safeguarding marine life and aquatic ecosystems against deleterious dye pollutants has emerged as a paramount concern. Methylene blue dye stands out as one such pollutant capable of inflicting irreversible damage to marine ecosystems even at minute concentrations. Addressing this pressing issue, we synthesized a novel CoMnFe2O4/graphene oxide nanocomposite employing a microwave-ultrasonic method. This composite, comprising soft superparamagnetic CoMnFe2O4 hollow microstructures integrated onto graphene oxide surfaces, revealed a mesoporous structure with a notably high surface area, which was about 96.4654 m2.g−1. Various analytical techniques were employed to scrutinize the crystal structure, functional groups, surface chemical composition, and morphologies of the synthesized CoMnFe2O4/graphene oxide nanocomposite (X-ray diffraction, Fourier-Transform Infrared Spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy). The CoMnFe2O4 crystal phase appears to be cubic in the X-ray diffraction with a 28.91 nm Avg. crystallite size. The measured band gap energies for the CoMnFe2O4, graphene oxide, and CoMnFe2O4/graphene oxide nanocomposite are 2.23 eV, 2.90 eV, and 1.89 eV, respectively. Remarkably, under visible light irradiation, the nanocomposite exhibited an impressive degradation efficiency of 97.54 % within just fifty minutes (at pH = 7, Methylene blue conc. = 15 mg/L, and catalyst dose = 0.05 g.), attributed to a photo degradation rate constant (k value) reaching 0.07330 min−1. Notably, this efficiency nearly doubled with the introduction of H2O2 peroxide. The outstanding recyclability of the CoMnFe2O4/graphene oxide nanocomposite, sustaining optimal performance over four cycles without significant degradation, underscores its potential for long-term environmental remediation efforts. Moreover, its magnetic extractability from contaminated solutions enhances its suitability for advanced environmental applications.
期刊介绍:
The Arabian Journal of Chemistry is an English language, peer-reviewed scholarly publication in the area of chemistry. The Arabian Journal of Chemistry publishes original papers, reviews and short reports on, but not limited to: inorganic, physical, organic, analytical and biochemistry.
The Arabian Journal of Chemistry is issued by the Arab Union of Chemists and is published by King Saud University together with the Saudi Chemical Society in collaboration with Elsevier and is edited by an international group of eminent researchers.