Michael Murack , Anthony K. Kadamani , Alexi Guindon-Riopel , Olivia H. Traynor , Umar Haris Iqbal , Stéphane Bronner , Claude Messier , Nafissa Ismail
{"title":"补充益生菌对长期睡眠紊乱的雌雄青春期小鼠的睡眠、抑郁样行为以及中枢葡萄糖和乳酸代谢的影响","authors":"Michael Murack , Anthony K. Kadamani , Alexi Guindon-Riopel , Olivia H. Traynor , Umar Haris Iqbal , Stéphane Bronner , Claude Messier , Nafissa Ismail","doi":"10.1016/j.psyneuen.2024.107146","DOIUrl":null,"url":null,"abstract":"<div><p>The prevalence of depression significantly increases during puberty and adolescence. Puberty is the period during which sexual maturity is attained, while adolescence persists beyond puberty and includes physiological, social, emotional, and cognitive maturation. A stressor that has been shown previously to induce depression is chronic sleep disruption. Probiotics can prevent stress-induced depression. However, it was unclear whether probiotics could prevent depression following chronic sleep disruption and what mechanism may be involved. Therefore, we investigated whether pubertal probiotic treatment could prevent depression-like behavior in mice following chronic sleep disruption. We also examined whether probiotic treatment could improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in chronically sleep-disrupted mice. We hypothesized that probiotic treatment would prevent depression-like behavior, improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in sleep-disrupted mice. Male and female mice (N=120) received cannula and electroencephalogram (EEG) electrode implants at postnatal day (PND) 26. Mice received Lacidofil® or Cerebiome® probiotics (PND 33–51) and were sleep-disrupted for the first 4 hours of the light phase (sleep period) (PND 40–51). Hippocampal L-lactate and glucose concentrations and sleep were measured over a 24-h period (PND 48–49). Depression-like behaviour was evaluated using tail suspension (PND 49) and forced swim tests (PND 50). Chronic sleep disruption increased depression-like behaviour and NREM duration in the dark phase, and reduced all metabolites and neuromodulating biomolecules measured within the brain. However, mice treated with probiotics did not display depression-like behaviour or decreased hippocampal L-lactate following chronic sleep disruption. Cerebiome prevented decreases to prefrontal serotonin and hippocampal glucose concentrations, while Lacidofil increased NREM duration in the latter half of the light phase. The current study not only replicates previous findings linking chronic sleep disruption to depression, but also demonstrates that pubertal probiotic treatment can mitigate the effects of chronic sleep disruption on depression-like behaviour and on the neural mechanisms underlying depression in a strain-dependent manner.</p></div>","PeriodicalId":20836,"journal":{"name":"Psychoneuroendocrinology","volume":"168 ","pages":"Article 107146"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306453024001914/pdfft?md5=41eed72e682ed14a189ffd7db05ef771&pid=1-s2.0-S0306453024001914-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The effect of probiotic supplementation on sleep, depression-like behaviour, and central glucose and lactate metabolism in male and female pubertal mice exposed to chronic sleep disruption\",\"authors\":\"Michael Murack , Anthony K. Kadamani , Alexi Guindon-Riopel , Olivia H. Traynor , Umar Haris Iqbal , Stéphane Bronner , Claude Messier , Nafissa Ismail\",\"doi\":\"10.1016/j.psyneuen.2024.107146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prevalence of depression significantly increases during puberty and adolescence. Puberty is the period during which sexual maturity is attained, while adolescence persists beyond puberty and includes physiological, social, emotional, and cognitive maturation. A stressor that has been shown previously to induce depression is chronic sleep disruption. Probiotics can prevent stress-induced depression. However, it was unclear whether probiotics could prevent depression following chronic sleep disruption and what mechanism may be involved. Therefore, we investigated whether pubertal probiotic treatment could prevent depression-like behavior in mice following chronic sleep disruption. We also examined whether probiotic treatment could improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in chronically sleep-disrupted mice. We hypothesized that probiotic treatment would prevent depression-like behavior, improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in sleep-disrupted mice. Male and female mice (N=120) received cannula and electroencephalogram (EEG) electrode implants at postnatal day (PND) 26. Mice received Lacidofil® or Cerebiome® probiotics (PND 33–51) and were sleep-disrupted for the first 4 hours of the light phase (sleep period) (PND 40–51). Hippocampal L-lactate and glucose concentrations and sleep were measured over a 24-h period (PND 48–49). Depression-like behaviour was evaluated using tail suspension (PND 49) and forced swim tests (PND 50). Chronic sleep disruption increased depression-like behaviour and NREM duration in the dark phase, and reduced all metabolites and neuromodulating biomolecules measured within the brain. However, mice treated with probiotics did not display depression-like behaviour or decreased hippocampal L-lactate following chronic sleep disruption. Cerebiome prevented decreases to prefrontal serotonin and hippocampal glucose concentrations, while Lacidofil increased NREM duration in the latter half of the light phase. The current study not only replicates previous findings linking chronic sleep disruption to depression, but also demonstrates that pubertal probiotic treatment can mitigate the effects of chronic sleep disruption on depression-like behaviour and on the neural mechanisms underlying depression in a strain-dependent manner.</p></div>\",\"PeriodicalId\":20836,\"journal\":{\"name\":\"Psychoneuroendocrinology\",\"volume\":\"168 \",\"pages\":\"Article 107146\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306453024001914/pdfft?md5=41eed72e682ed14a189ffd7db05ef771&pid=1-s2.0-S0306453024001914-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychoneuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306453024001914\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychoneuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306453024001914","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The effect of probiotic supplementation on sleep, depression-like behaviour, and central glucose and lactate metabolism in male and female pubertal mice exposed to chronic sleep disruption
The prevalence of depression significantly increases during puberty and adolescence. Puberty is the period during which sexual maturity is attained, while adolescence persists beyond puberty and includes physiological, social, emotional, and cognitive maturation. A stressor that has been shown previously to induce depression is chronic sleep disruption. Probiotics can prevent stress-induced depression. However, it was unclear whether probiotics could prevent depression following chronic sleep disruption and what mechanism may be involved. Therefore, we investigated whether pubertal probiotic treatment could prevent depression-like behavior in mice following chronic sleep disruption. We also examined whether probiotic treatment could improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in chronically sleep-disrupted mice. We hypothesized that probiotic treatment would prevent depression-like behavior, improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in sleep-disrupted mice. Male and female mice (N=120) received cannula and electroencephalogram (EEG) electrode implants at postnatal day (PND) 26. Mice received Lacidofil® or Cerebiome® probiotics (PND 33–51) and were sleep-disrupted for the first 4 hours of the light phase (sleep period) (PND 40–51). Hippocampal L-lactate and glucose concentrations and sleep were measured over a 24-h period (PND 48–49). Depression-like behaviour was evaluated using tail suspension (PND 49) and forced swim tests (PND 50). Chronic sleep disruption increased depression-like behaviour and NREM duration in the dark phase, and reduced all metabolites and neuromodulating biomolecules measured within the brain. However, mice treated with probiotics did not display depression-like behaviour or decreased hippocampal L-lactate following chronic sleep disruption. Cerebiome prevented decreases to prefrontal serotonin and hippocampal glucose concentrations, while Lacidofil increased NREM duration in the latter half of the light phase. The current study not only replicates previous findings linking chronic sleep disruption to depression, but also demonstrates that pubertal probiotic treatment can mitigate the effects of chronic sleep disruption on depression-like behaviour and on the neural mechanisms underlying depression in a strain-dependent manner.
期刊介绍:
Psychoneuroendocrinology publishes papers dealing with the interrelated disciplines of psychology, neurobiology, endocrinology, immunology, neurology, and psychiatry, with an emphasis on multidisciplinary studies aiming at integrating these disciplines in terms of either basic research or clinical implications. One of the main goals is to understand how a variety of psychobiological factors interact in the expression of the stress response as it relates to the development and/or maintenance of neuropsychiatric illnesses.