Yu-tian FAN , Li-wei LU , Jian-bo LIU , Min MA , Wei-ying HUANG , Rui-zhi WU
{"title":"变形温度对新型塑性变形法加工的 AZ31 镁合金微观结构和纹理的影响","authors":"Yu-tian FAN , Li-wei LU , Jian-bo LIU , Min MA , Wei-ying HUANG , Rui-zhi WU","doi":"10.1016/S1003-6326(24)66530-1","DOIUrl":null,"url":null,"abstract":"<div><p>A new method of repeated upsetting−extrusion (RUE) deformation was presented. The effects of different deformation temperatures on the microstructure and texture of RUE deformed AZ31 magnesium (Mg) alloy were studied using optical microscopy (OM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness tester. The results show that the microstructure of the AZ31 Mg alloy is locally refined to 0.8 μm after RUE deformation, and the main refinement mechanism is the continuous dynamic recrystallization (CDRX). As the temperature increases, the texture of basal plane parallel to shearing plane is formed firstly, followed by texture with weaker intensity, and finally and textures. The texture split is caused by the dislocation slip of basal 〈a〉 and pyramidal 〈a〉. The maximum hardness of the AZ31 Mg alloy after RUE deformation is increased by 42.4% compared with that at the initial state, which is mainly due to the fine-grained strengthening and the dislocation strengthening.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 7","pages":"Pages 2138-2152"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632624665301/pdf?md5=f62f5e49e3579df4be69d6273fa4d620&pid=1-s2.0-S1003632624665301-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of deformation temperature on microstructure and texture of AZ31 magnesium alloy processed by new plastic deformation method\",\"authors\":\"Yu-tian FAN , Li-wei LU , Jian-bo LIU , Min MA , Wei-ying HUANG , Rui-zhi WU\",\"doi\":\"10.1016/S1003-6326(24)66530-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new method of repeated upsetting−extrusion (RUE) deformation was presented. The effects of different deformation temperatures on the microstructure and texture of RUE deformed AZ31 magnesium (Mg) alloy were studied using optical microscopy (OM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness tester. The results show that the microstructure of the AZ31 Mg alloy is locally refined to 0.8 μm after RUE deformation, and the main refinement mechanism is the continuous dynamic recrystallization (CDRX). As the temperature increases, the texture of basal plane parallel to shearing plane is formed firstly, followed by texture with weaker intensity, and finally and textures. The texture split is caused by the dislocation slip of basal 〈a〉 and pyramidal 〈a〉. The maximum hardness of the AZ31 Mg alloy after RUE deformation is increased by 42.4% compared with that at the initial state, which is mainly due to the fine-grained strengthening and the dislocation strengthening.</p></div>\",\"PeriodicalId\":23191,\"journal\":{\"name\":\"Transactions of Nonferrous Metals Society of China\",\"volume\":\"34 7\",\"pages\":\"Pages 2138-2152\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1003632624665301/pdf?md5=f62f5e49e3579df4be69d6273fa4d620&pid=1-s2.0-S1003632624665301-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Nonferrous Metals Society of China\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1003632624665301\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665301","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
该研究提出了一种重复镦挤(RUE)变形的新方法。利用光学显微镜(OM)、X 射线衍射(XRD)、电子反向散射衍射(EBSD)和维氏硬度计研究了不同变形温度对 RUE 变形 AZ31 镁(Mg)合金的微观结构和质地的影响。结果表明,AZ31 Mg 合金的微观组织在 RUE 变形后局部细化至 0.8 μm,主要细化机制是连续动态再结晶(CDRX)。随着温度的升高,首先形成平行于剪切面的基底面纹理,其次是强度较弱的纹理,最后是和纹理。纹理分裂是由基面〈a〉和金字塔〈a〉的位错滑移造成的。AZ31镁合金在RUE变形后的最大硬度比初始状态提高了42.4%,这主要是由于细晶粒强化和位错强化所致。
Effect of deformation temperature on microstructure and texture of AZ31 magnesium alloy processed by new plastic deformation method
A new method of repeated upsetting−extrusion (RUE) deformation was presented. The effects of different deformation temperatures on the microstructure and texture of RUE deformed AZ31 magnesium (Mg) alloy were studied using optical microscopy (OM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness tester. The results show that the microstructure of the AZ31 Mg alloy is locally refined to 0.8 μm after RUE deformation, and the main refinement mechanism is the continuous dynamic recrystallization (CDRX). As the temperature increases, the texture of basal plane parallel to shearing plane is formed firstly, followed by texture with weaker intensity, and finally and textures. The texture split is caused by the dislocation slip of basal 〈a〉 and pyramidal 〈a〉. The maximum hardness of the AZ31 Mg alloy after RUE deformation is increased by 42.4% compared with that at the initial state, which is mainly due to the fine-grained strengthening and the dislocation strengthening.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.