基于时空谱法的时间和跨度周期流场优化:应用于可压缩边界层流中的非线性不稳定性

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Arthur Poulain , Cédric Content , Aldo Schioppa , Pierre Nibourel , Georgios Rigas , Denis Sipp
{"title":"基于时空谱法的时间和跨度周期流场优化:应用于可压缩边界层流中的非线性不稳定性","authors":"Arthur Poulain ,&nbsp;Cédric Content ,&nbsp;Aldo Schioppa ,&nbsp;Pierre Nibourel ,&nbsp;Georgios Rigas ,&nbsp;Denis Sipp","doi":"10.1016/j.compfluid.2024.106386","DOIUrl":null,"url":null,"abstract":"<div><p>We aim at computing time- and span-periodic flow fields in span-invariant configurations. The streamwise and cross-stream derivatives are discretised with finite volumes while time and the span-direction are handled with pseudo-spectral Fourier-collocation methods. Doing so, we extend the classical Time Spectral Method (TSM) to a Space–Time Spectral Method (S-TSM), by considering non-linear interactions of a finite number of time and span harmonics. For optimisation, we introduce an adjoint-based framework that allows efficient computation of the gradient of any cost functional with respect to a large-dimensional control parameter. Both theoretical and numerical aspects of the methodology are described: evaluation of matrix–vector products with S-TSM Jacobian (or its transpose) by algorithmic differentiation, solution of fixed-points with quasi-Newton method and de-aliasing in time and space, solution of direct and adjoint linear systems by iterative algorithms with a block-circulant preconditioner, performance assessment in CPU time and memory. We illustrate the methodology on the case of 3D instabilities (first Mack mode) triggered within a developing adiabatic boundary layer at M = 4.5. A gradient-ascent method allows to identify a finite-amplitude 3D forcing that triggers a non-linear response exhibiting the strongest time- and span-averaged drag on the flat-plate. In view of flow control, a gradient-descent method finally determines a finite amplitude 2D wall-heat flux that minimises the averaged drag of the plate in presence of the previously determined non-linear optimal forcing.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"282 ","pages":"Article 106386"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045793024002184/pdfft?md5=d50ce5e137e50434aea6af6be4060dbe&pid=1-s2.0-S0045793024002184-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adjoint-based optimisation of time- and span-periodic flow fields with Space–Time Spectral Method: Application to non-linear instabilities in compressible boundary layer flows\",\"authors\":\"Arthur Poulain ,&nbsp;Cédric Content ,&nbsp;Aldo Schioppa ,&nbsp;Pierre Nibourel ,&nbsp;Georgios Rigas ,&nbsp;Denis Sipp\",\"doi\":\"10.1016/j.compfluid.2024.106386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We aim at computing time- and span-periodic flow fields in span-invariant configurations. The streamwise and cross-stream derivatives are discretised with finite volumes while time and the span-direction are handled with pseudo-spectral Fourier-collocation methods. Doing so, we extend the classical Time Spectral Method (TSM) to a Space–Time Spectral Method (S-TSM), by considering non-linear interactions of a finite number of time and span harmonics. For optimisation, we introduce an adjoint-based framework that allows efficient computation of the gradient of any cost functional with respect to a large-dimensional control parameter. Both theoretical and numerical aspects of the methodology are described: evaluation of matrix–vector products with S-TSM Jacobian (or its transpose) by algorithmic differentiation, solution of fixed-points with quasi-Newton method and de-aliasing in time and space, solution of direct and adjoint linear systems by iterative algorithms with a block-circulant preconditioner, performance assessment in CPU time and memory. We illustrate the methodology on the case of 3D instabilities (first Mack mode) triggered within a developing adiabatic boundary layer at M = 4.5. A gradient-ascent method allows to identify a finite-amplitude 3D forcing that triggers a non-linear response exhibiting the strongest time- and span-averaged drag on the flat-plate. In view of flow control, a gradient-descent method finally determines a finite amplitude 2D wall-heat flux that minimises the averaged drag of the plate in presence of the previously determined non-linear optimal forcing.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"282 \",\"pages\":\"Article 106386\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0045793024002184/pdfft?md5=d50ce5e137e50434aea6af6be4060dbe&pid=1-s2.0-S0045793024002184-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024002184\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024002184","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是计算跨度不变配置中的时间和跨度周期流场。流向导数和横流导数采用有限体积离散法,而时间和跨度方向则采用伪谱傅里叶定位法。在此过程中,通过考虑有限数量的时间和跨度谐波的非线性相互作用,我们将经典的时间频谱法(TSM)扩展为时空频谱法(S-TSM)。在优化方面,我们引入了一个基于邻接的框架,可以高效计算任何成本函数相对于大维度控制参数的梯度。我们从理论和数值两方面对该方法进行了描述:通过算法微分对具有 S-TSM 雅各布(或其转置)的矩阵向量积进行评估,用准牛顿法解决定点问题,并在时间和空间上进行去锯齿处理,用具有块环流预处理器的迭代算法解决直接和邻接线性系统问题,以及在 CPU 时间和内存方面进行性能评估。我们以 M = 4.5 时在发展中绝热边界层内引发的三维不稳定性(第一 Mack 模式)为例说明了该方法。梯度上升法可以确定一个有限振幅的三维强迫,该强迫会触发非线性响应,在平板上表现出最强的时间和跨度平均阻力。考虑到流动控制,梯度下降法最终确定了一个有限幅值的二维壁面热通量,在先前确定的非线性最佳强迫条件下,使平板的平均阻力最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjoint-based optimisation of time- and span-periodic flow fields with Space–Time Spectral Method: Application to non-linear instabilities in compressible boundary layer flows

We aim at computing time- and span-periodic flow fields in span-invariant configurations. The streamwise and cross-stream derivatives are discretised with finite volumes while time and the span-direction are handled with pseudo-spectral Fourier-collocation methods. Doing so, we extend the classical Time Spectral Method (TSM) to a Space–Time Spectral Method (S-TSM), by considering non-linear interactions of a finite number of time and span harmonics. For optimisation, we introduce an adjoint-based framework that allows efficient computation of the gradient of any cost functional with respect to a large-dimensional control parameter. Both theoretical and numerical aspects of the methodology are described: evaluation of matrix–vector products with S-TSM Jacobian (or its transpose) by algorithmic differentiation, solution of fixed-points with quasi-Newton method and de-aliasing in time and space, solution of direct and adjoint linear systems by iterative algorithms with a block-circulant preconditioner, performance assessment in CPU time and memory. We illustrate the methodology on the case of 3D instabilities (first Mack mode) triggered within a developing adiabatic boundary layer at M = 4.5. A gradient-ascent method allows to identify a finite-amplitude 3D forcing that triggers a non-linear response exhibiting the strongest time- and span-averaged drag on the flat-plate. In view of flow control, a gradient-descent method finally determines a finite amplitude 2D wall-heat flux that minimises the averaged drag of the plate in presence of the previously determined non-linear optimal forcing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信